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Abgtract

Modern optimal control methods are used to develop a multiple input
multiple output controller. The controller is then applied to two models.
The first model is a lumped mass model of a tetrzhedrom counsisting of four
unit masses interconnected by isotropic massless rods. These rods are
assumed to be pin-connected and may undergo axial deformation only. The
second model is a sophisticated optical space structure more representa-
tive of large flexible space structures than the first model. This model
consists of fifty-nine nodes and twenty-three lumped masses. The besm
elements are fully connected and uy support axial, transverse and torsional
deformations. NASTRAN is employed to generate modal approximations of
both models, as well as the mode shapes and frequencies of the resulting
wodes. Twelve modes sre generated for the first model. Of the numerous
modes available for the second model, only the first forty-four modes are
addressed, and of these twelve are implemented in the controller.

The control problem is formulated in state vector form and full state
feedback is implemented. The state is represented as modal amplitudes and
rates and the feedback gains are generated using steady state optimal regu-
lator theory. State estimates are provided by means of a deterministic
observer. System outputs are obtained by position sensors and control is
applied by point force actuators. The technique by which "spillover" is
eliminated is developed using the method of singular value decomposition.

Decentralized control was accomplished using three and four comtrollers
with both models. Comditions for which the stability of each model s
assured are developed. Model onme i{s rum with three comtrollers coataimiag
the first eight modas to verify system stability. The re=maiaing four
medes sre added as residuals to the thres comtrollers. Model ome was also

vit




Ten with four contrellers contsining all twelve system modes. In all cases,
clesnd loep damping of better tham ten percent wes schisved om all modes
with a slight loes in controlladility amd cbservebility during the spill-
over alimimatioa. Model two was then examined using three and four con-
trollers om the twelve selected modes. Full coatroller decoupling was
achioved and stability wes maintained for the twelve modes exsminsd. How-

m.mkutrtmuﬁmmmmtun, therefore, the

controller pirformance could mot be werified.




‘» : DECENTRALIZED CONTROL OF A LARGE SPACE
4

STRUCTURE AS APPLIED TO THE CSDL 2 MODEL
1. Introduction

With the current success in the Space Transportation System, the near

future holds a significant increase in the size of structures that may bg

employed in space. Projected dimersions for the large space structures
range from tens to thousands of meters in size, taking advantage of the
low gravity environment to make the systems cost effective. Tubular,
lightweight truss members make these structures practical, but also make
them very flexible. The increases in size and flexibility lead to an over-

all increase in the number of low frequency modes that may be contained

within the control system bandwidth. Control of such structures then be~
z comes incregsingly difficult as the dimensions of the controllers increase.
Since active control is performed by on-line computers, larger controller
di-a/uims result in slower control response. To keeép the controllers
di;cnsiomlly realistic, modeling of the satellite and its structural
wodes becomes a prime concern. A discrete atructural analysis of a large
space structure may include from one hundred to several hundred of these
modes. Unfortunately, the accuracy of the modal information obtained from
such an analysis decreases with increasing wmode number. Such modeling
inaccuracies could result in overall system instability wvhen not properly
accounted for.
0f the various control techniques available, modern state-space con-
ttol theory appesrs to be best suited for application to large flexible

space structures, in light of the problems with off-line computing

‘ accuracy and on-1line computing speed. These state space controllers make




. .
use of reduced order finite element structural models to minimize compu-
tational burdens. This may generate modeling and reduction errors, but
allows this method to be easily applied to any of a wide variety of large
flexible space structures. As implied earlier, the number of structural
modes any single controller can handle is limited by computational consi-
derations, but these limits may be extended by using ;;ltiple controllers
within the system, eaqh controller performing independently.

Even with an expanded number of controllers, the number of modes that
may be controlled is small compared to the number of modes that exist for
a given structure. Therefore, the selection of modes to be controlled must
be made carefully. Only ‘those modes affecting performance need be con-
trolled. The terms "comtrolled" and "critical" will be used interchange-
atbly for the modes. The remaining uncontrolled modes fall into three
categories: suppressed, residual and unmodeled. Obviously, for a large
space structure, the number of strﬁctural modes approaches infinity. Natural
damping in the structure will normally prevent instabilities arising from
the higher frequency modeg, so, for model simplicity, these are truncated
and left as unmodeled modes. The remaining uncontrolled modes are modeled
modes. Of these, some may have destabilizing affects due to spillover
and therefore have to be made transparent to the controller. These are
called suppressed modes. The last mode group is modeled, uncontrolled and
unsuppressed. These are the residual modes and may move freely when con-
trol is applied. They may become more stable, less stable or unstable due
to control and observation spillover from the critical modes.

It must be remembered that even though specific modes are actively
controlled, the residual and unmodeled modes still exist and will contami-

nate the observation (semnsor) data. Therefore, the controlled and uncon-




trolled modes are coupled. Balas (Ref 1) calls this coupling "observation
spillover". Likewise, any control applied to the critical modes may excite
one or several uncontrolled modes. This form of coupling is referred to as
“"control spillover", and Balas goes on to state that either or both types

of spillover may result in overall instabilities. He proposes a state
variable feedback controller which relies on narrow bandpass filters

to eliminate observation spillover by filtering out suppressed mode frequen-
cies from controller input data.

Sesak (Ref 2) proposed the use of a singular perturbation technique to
develop an appropriate feedback controller and eliminate instabilities due
to spillover. Coradetti (Ref 3) later expanded Sesak's approach and con-
cluded that, in the limiting sense with an infinite penalty against any
spillover, the singular perturbation technique is equivalent to finding a
transformation matrix which, when applied to the feedback gains, will drive
the spillover terms to zero. This transformation matrix is determined by
performing a singular value decomposition of the control and observation
matrices (Ref 4). When the transformation technique is coupled with the
modern state-space control technique, an effective method is obtained for
eliminating spillover, and works equally well on control and observation
spillover. Moreover, even when such spillover is not detrimental to the
overall system stability, its elimination can only enhance the system
performance.

The intent of this thesis is to apply the aforementioned control
techniques in developing a control system consisting of three or more
decentralized controllers. This control system will be applied to a lumped
mass tetrahedron model generated by the Charles Stark Draper Laboratory,
Inc., (CSDL), hereafter called the CSDL 1 model. Calico and Janiszewski

(Ref 5) applied the described technique to the CSDL 1 model using a single
3
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controller and eliminating only observation spillover. Later, Calico and
Miller (Ref 6) expanded the system to a dual controller, and showed that
only observation spillover elimination is not sufficient for higher order
controllers. More detailed results are given by Miller (Ref 7) for the
dual controller case. Therefore, it has been demonstrated that this tech-
nique is appropriate for this model. This present study will use three con-
trollers for this model. System performance .11 be evaluated by eigen-
value analysis of the closed loop system. Next, the triple controller
system will be expanded to accommodate the second CSDL model--a three-
mirror, optical space system. Again, an eigenvalue analysis will determine
the control system's closed loop performance. Line of sight pointing
accuracy and defocus are performance criteria that are mentioned for
information, but will not be addressed in this investigation. In applying
the control method, for both models, position sensors are used to determine
modal amplitudes while point force actuators provide the state variable
feedback control.

The following sections will detail both of the CSDL models and their
finite element representations. Afterward, the modal control and matrix
transformation methods will be discussed. Finally, the computer program

implementation and results will be presented.
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II. Model Configuration

Illustration and demonstration of controller design methods for large
space structures has always been a difficult problem. The very nature of
large space structures prevents the developmént of a simple textbook exam-
ple. In response to this problem, the Charles Stark Draper Laboratory
(CsbL), Inc., of Cambridge, Massachusetts, developed two (paper) models for
research. Both models are used in this investigation. Finite element
representations of the models are generated by the NASTRAN computer pro-

grams. Presentations of the models and their eigenvalue analyses follow.

CSDL 1 Model

*

The first model used is a lumped mass tetrahedron and is referred to
as the CSDL 1 model. This model was selected for its simplicity as well
as 1its similarity to basic large space structures under considerationm,
from both a structures and a control point of view. The tetiahedral struc-
ture is the building block of most large space structure design concepts.
It provides a low order model to which control systems may be easily
applied due to the small number of modes present. Also, response charac-
teristics exhibited by the model are very similar to those observed in
large space structures. This is probably the simplest model available
which behaves much like a large space structure.

The finite element model of the structure is depicted in Fig 1. The
structure has twelve members joined at ten nodes. The truss members are
congidered massless and are pin-connected at the nodes, so that only axial
forces are exerted (no bending moments). The masses are equal--one unit
each--and are located at the first four nodes (the vertices of the tetra-
hedron proper). Since each mass is assumed to have three translational
degrees of freedom, the system has twelve structural modes. The last six

]




nodes form the ground connections for the three right-angled bipods which
support the tetrahedral truss. This ground base provides a reference from
which 2 line of sight may be established. The coordinates for the ten nodes
are given in Table I. The reference frame origin for the coordinates is
placed directly below the apex in the plane of nodes five through ten. Six

pair of collocated force actuators and position sensors are used on this

model.
Table I
CSDL 1 Node Coordinates
Node x b2 z
1 0.0 0.0 10.165
2 =5.0 ~2.887 2.0 °*
3 5.0 2.887 2.0
4 0.0 5.7735 2.0
! 5 -6.0 ~1.1547 0.0
6 -4.0 -4.6188 0.0 )
7 4.0 ~4.6188 0.0
8 6.0 ~1.1547 0.0
9 2.0 5.7735 0.0

The key results of an eigenvalue analysis of this model are presented
in Table II. Listed are the generalized mass and stiffness and the natural
frequencies of each structural mode. The eigenvectors for each mode are

presented in Appendix A. This data was obtained from a NASTRAN eigenvalue

analysis.




a. 3 Dimensional View

] A b. Side View

Figure 1. CSDL 1 System Model
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Table 11

Key Results of NASTRAN Eigenvalue Analysis on CSDL 1 Model

Generalized Generalized rad rads
Mode Mass Stiffness w__sec 2 sec
1 1.0E+00 1.37E+00 1.17E+00 1.37E+00
2 1.0E4+00 2.15E+00 1.47E+00 2.15E+00
3 1.0E400 8.79E+00 2.97E400 8.79E+00
4 1.02+00 1.26E+01 3.56E4+00 1.26E+01
S 1.0E+00 1.48E+01 3.85E+00 1.48E401 |
6 1.0E+00 2.65E+01 5.15E+00 2.65E+01
7 1.0E+00 3.22E401 5.68E+00 3.22E401
8 1.0E400 3.26E+401 5.71E+00 3.26E+01
9 1.0E4+00 7.99£+01 8.94E+00 7.99E4+01
10 1.0E+00 1.06E402 1.01E+01 1.06E+02
11 1.0E400 1.19E2402 1.09E+01 1.19E+02
12 1.0E+00 1.95E402 1.40E+01 1.95E+02

Eigenvalue snalysis of the modal movements will give an indication of
the performance of the system coautrol. Line of sight, based on the x-y
motion of mode one, is an important performance parameter. Initial condi-
tions may be applied to the model to develop a time history of tha system
response. The initial conditions for this model are listed in Table III.
As a first cut on the three controller design, the line of sight pointing
performance will not be addressed in this investigation. Nevertheless,
the developwent of the error terms to which the initial conditions are

applied will be explained along with the system equations of motion.




Table 111

Initial Conditions Applied-to TSDL 1

Mode Displacement (n) Velocity (i)
1 -.001 -.003
2 0.006 0.010
3 0.001 0.030
4 -.019 -.020
5 0.008 0.020
6 -.001 -.020
7 ~.002 -.003
8 0.002 0.004
9 0.000 0.000
10 0.000 0.000
11 0.000 0.000
12 0.000 0.000
CSDL 2 Model

The second model under consideration is a "generic” optical space
structure vhich has a behavior much closer to that of a large space
structure than the first discussed. This model is referred to as CSDL 2.
Figure 2 shows a conceptual view of the structure and Fig 3 is a finite
element representation of the model.

CSDL 2 is s non~-trivial model representing a wide-angle, three-mirror,
optical space system The two major components of the system are the opti-
cal support atruct and the equipment section. The optical support struc-
ture consists of the upper mirror support truss, the lower mirror support
trus, and the metering truss. The upper mirror support truss contains the
pth.ry. mirror (convex shaped) and the tertiary mirror (concave shaped).
The lower mirror support truss contains the secondary mirror (flat) and the
focal plane (image receiving device). The mt.oun; truss maintains the
airror separation and is the key section whén examining defocus. The opti-




Pigure 2.

CSDL Conceptual Diagram
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Figure 3. CSDL System Model
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cal support structure and mirror placement are shown m‘ Figure 4. Attached
to the lower side of the lower mirror support truss is the ‘equipment sec-
tion wvhich consists of the control package, modeled as a rigid body, with
two cantilevered flexible solar panels. The full structure is approximately
twenty-eight meters high and has a mass of 9300 kilograms. The structural
dimensions are shown in Figure 5.

The finite element model of the structure contains fifty-nine node
points, but the actual structure has only fifty-one nodes. The extra nodes
wvere added to provide more detail in the modeling of the mirrors and equip-
ment section (Ref 8). The coordinaces of the nodes are given in Table 1V,
and the placement of the nodes in the support structure are shown in Fig

6. Unlike the first model, the truss members are fully jcined so that bend- ‘

ing and torsion are allowed. The truss elements are made of graphite-epoxy
and assumed to be massless. The system mass is lurped at twenty-three nodes
and discributed as shown in Table V. The largest mass is located in the
equipment package, as would be expected.

. The key results of an eigenvalue analysis performed on this model are
listed in Table VI. The generalized mass and stiffness, as well as the

natural frequency of the first forty-four structural modes is given. Of

the modes listed, those with an asterisk were used in this study. The
associated eigenvectors for each mode are presented in Appendix B. Again,
this data is obtained via the NASTRAN computer program.

This model makes uu'of twventy-one pairs of collocated force actuators
H snd position sensors. A list of sensor/actuator locatiomsand orieatations
' is provided in Table VII.

As in the CSDL I model, eigemvalue analyses will provide comntrol per-

formance information. Line-of-sight performance, as well as defocus along

12




Pigure 4. CSDL 2 Optical System
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FPigure 6. CSDL 2 Support Structure Nodal Placement




Table IV

CSDL 2 Node Coordinates
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Table V ’

" “
CSDL 2 Lumped Mass Distribution J
]
" Node Mass_(kg) Node Mass (kg)
9 67.4 52 73.8 i
10 67.4 53 73.8
11 67.4 55 163.8 i
12 67.4 57 81.9
27 69.5 1001 1000
28 6.74 1002 800
29 69.5 1003 1290 ‘
30 6.74 1004 600
32 6.74
| 33 6.74
- 34 69.5
35 69.5
44 3500
48 81.9

50 1.638
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, Table VI
Key Results of NASTRAN Eigenvalue Analysis on Nominal CSDL 2 Model
Generalized Generalized rad ggg?
Mode Mass Stiffness w_sec fl sec
1-6% 1.00E+00 0.0 0.0 0.0
T 1.00E+00 5.128E-01 7.161E~-01 5.128E-01
1.00E+30 8.521E-01 9.231E-01 8.521E~01
1.00E+00 8.835E-01 9.399E-01 8.835E~01
10 1.00E+00 1.212E+00 1.101E400 1.212E+00
11 1.00E4+00 8.189E+00 2.862E+00 8.189E+00
12# 1.00E+00 1.266E+01 3.502E+00 1,226E+01
13 1.00E+00 1.403E+01 3.746E400 1.403E+01
14 1.00E+0Q 1.492EH01 3.863E+00 1.492E+01
15 1,00E+00 1.599E+01 3.998E+04 1.599E+01
16 1.00E+00 1.625E+01 4.032E+00 1.625E+01
17* 1.00E+00 2.623E+01 5.122E+00 2.623E+01
18 1.00E+00 2.630E+01 5.128E+00 2.630E+01
19 1.00E+00 2.677E+01 5.174EH00 2.677E+01
20 1.00E+00 3.310E401 5.753E+00 3.310E401
21% 1.00E+00 3.730E+01 6.197E+00 3.730E4+01
22% 1.00E+00 5.301E+01 7.281E+00 5.301E+01
23 1.00E+00 9.498E+01 9. 746E+00 9.498E+01
24% 1.00E+00 1.241E4+02 1,114E+01 1.241E+02
25 1.00E+Q0 1.999E+02 1.414E+01 1.999E+02
26 1.00E+00 2.001E+02 1.416E+01 2.001E+02
27 1.00E+00 4.654E402 2.157E401 4,.654E+02
28* 1.00E+00 4.705E+02 2.169E401 4,705E+02
29 1.GGERC 6.182E4+02 2.468E+01 6.182E+02
30+ 1.00E4+00 6.275E402 2.505E4+01 6.275E+02
31 1.00E4+00 6. 4B1E4+02 2.546FH01 6.481E4+02
32 1.00E+00 7.428E+02 2.725E4+01 7.428E402
33 1.00R+00 1.700E403 4.123E401 1.700E+03
34 1.00E+00 2.568E+03 5.067E+01 2.568'.403
35 1.00E+00 2.821E+03 5.311E+01 2.821E+03
36 1.00E+00 3.095E+03 5.563E401 3.095E+03
18
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Table VI, continued

Key Results of NASTRAN Eigenvalue Analysis on Nominal CSDL 2 Model

: Generalized Generalized rad ggg?
Mode Mass Stiffuness w sec Q sec
37 1.00E+00 3.205E+403 5.661E+01 3.205E+03
38 1. 00E+00 4.221E403 6.497E+01 4.221E+03
39 1.00E+00 4.380E+03 6.618E+01 4.380E+03
40 1.00E+00 5.266E+03 7.257E401 5.266E+03
41 1.00E+00 5.358E+03 7.320E4+01 5.358E+03
42 1.00E+00 5.360E+03 7.321E+01 5.360E+03
43 1.00E+00 5.361E+03 7.322E401 5.361E+03
44 1.00E+00 5.368E+03 7.327E401 5.368E+03

*denotes modes actively controlled in this study.
body modes, only 4, 5, and 6 were controlled.

0f the rigid
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Table VII
! )y
CSDL 2 Sensor/Actuator Locations and Orientations
Pair Node x Y z ;
1 9 0 1 0 (n f
2 9 0 0 1 direction |
3 10 0 0 1 cosines)
4 11 1 0 0
5 11 0 1 0
6 11 (1) 0 1
7 12 0 0 1
8 27 1 0 0
9 27 0 1 0
10 27 0 0 1
11 28 0 0 1
12 29 0 1 0
13 29 0 0 1
14 30 0 0 1
L 15 32 0 0 1
16 33 0 0 1
17 34 1 0 0
18 34 0 1 0
19 34 0 o 1
20 35 0 1 0
21 35 0 0 1

the z-axis, are important analysis factors, but as a first cut, will not
be directly addressed in this investigation. Instead, the eigenvalue
analysis will provide information on controller maintenance of modal
stability and on controller independence (decoupling).

The controller development on which this study is based will now be

presented.




I11. System Model

1 Equatioas of Mocion )

As presented by laiico and Millor (Refs 6 and 7), the system model
may be developed from tlwe vibrational equations of motion for a large
space structure given generally as

Mg + 2§ + K§ = D Q)
where

M= noxn sy-iric sass aatrix

E = nxn symmetric damping matrix

K = nxn symmetric stiffness matrix

D = nxm matrix of nodal, attitude-evaluated actuator locations
g = nxl generalized coordinate vector ‘
u = mxl control input vector

| Introducing the nxn wodal matrix ¢ for Eq 1, such that

§=¢n (2)
vhere n i{s the n-vector of modal coordinates, Eq 1 may be written as
N . N . N .
I |5 + 2tw | 0 + w J A =eDu 3)
N S \

the w and ci terms being natural frequencies and demping coefficients,
respectively, of the specific modes. The properties of the modal matrix

® are such that the coefficients of Eq 3 are given by

[\1\] - ¢Tne

\z n T
g.J-oto %)
N\

[ ] o




vhere |

A Y
[ I |= nxn identity matrix

-~

23w _|= nxn diagonal damping satrix

uz = nxn diagonal matrix of eigenvalues of Eq 1

~

Equation 3 may now be converted into a state space representation of

the system, given by

X = Ax + M (5)

in which

A = nxn plant matrix
B = nxm input matrix
X = nxl state vector
u = mxl control input vector

These system parameters are of the form:

B = e e (6)

p-1]

Sie

The complete state, however, is normally not available, so Eq 5 must be
supplemsnted by an output equation. State space form gives the sensor

output as




y=Cq +C

4 +C, ™

Ll

vhen both position (p subscript) and velocity (v subscript) sensors are
used. Expressing this in state vector x:

y=cCx (8)

C= [CPO ' CVQ] 9

Equations 5 and 8 form the large space structure model available to the

vhere

control designer. These equations will be further explained so they will
hold more significance when being applied to wmodal control of flexible
structures.

Control Model

The full structural model is represented by the 2n-dimensional state
vector x. As noted earlier, it is impossible to model all of the possible
sodes for a complex structure, and of those modeled. even fewer will be
actively controlled. Assuming that multiple controllers are available,
each controlling a small subset n, of nodes, as in this investigation, the

state vector may be simply represented by

- T O T T T
Xxs 81, !2. LICICRC Y 5. ‘t’ I_

The x, terms reprusent an-nc:ou of modal amplitudes and velocities as

(10)

defined by the last of Eq 6 comtrolled by the 1 th coatroller of ¥ con-

trollers pressent. The ;r represents a znr-voctor of residual modes and

the the §_ represents a 2n _-vector of ummodeled modes.

As defined earlier, the unmodeled modes are those which exist but are
beyond the number of modes in the structural model. These will no longer

sppear in the derivations. The residual modes sre those which are modeled

23
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but not coantrolled. The controlled modes are those which require active
control in order to obtain satisfactory system response. The selection

of the modes to be controlled and their assigmment to one of the N con-

trollers is left to the control designer.

It should be noted at this point that suppressed modes were not
directly referred to above even though they were defined earlier in the
text. They have not been ignored, in fact they are included within the
controclled modes, in the following manner: 1In a multiple controller
design, the individual controller actively controls those modes assigned
to it and "ignores" the residual modes defined above. But the modes
assigned to the other controllers still interact with this individual
controller, causing control and/or observation spillover. In the process
of controlling the system, each controller contributes to the elimination
of observation and control spillover in the system. Thus, each controller,
in effect "suppresses” the modes contained in the other controllers. In
other words, the controlled modes of one controller are the suppressed
modes of another controller. Therefore, the suppressed modes are con-
tained implicitly within the controlled modes. So, like the unmodeled
modes, the suppressed modes exist in the system, but will not be men-
tioned any longer in the derivations since they are included implicitly
in the controlled modes.

Continuing with the derivation, the notation of Eq 10 may be used

to express the state equations as follows

X, - A‘x‘ + .1“ 1t=1,2, .co0eoy N 11)

T =AX +33 (12)




N
y= I cix1 + Ctx

i=1 r

wvhere the A, B and C matrices are

~ r

€y = [cpj ¢

=12, ..., N, ©

§j=1,2, ..., N, r

j.lt 2: ceoy N,t

13)

(14)

(15)

(16)

Moreover, the lower partition of Eq 15, the o'rnjl and ornr matrices, are of

the form

T
¢ D1 - ,1

o’nr -

vhere

CR IR

@ " 45" 4

The ¢, are the column vectors of the matrix ¢ and the ¢

3

an

(18)

19)

(20;

1K and dtk are the

column vectors of the D1 and Dr matrices, respectively. Using the forms

given in Iqs 17 to 20, the OTD1 and Otbt satrices may be represented as




o -

(v 1)11 (*1)12 ceas (01)1 a,
Yy O 1021 Wydg ®2 0 (21
( ( ceee )
I v 1%11 ¥ih, 2 ®dan
i .
Wedvy  GWpdyp eeee (0 a,
4 =
r (*r)21 (*r)zz (*r)z n‘ (22)
(¢r)nr1 (wr)an teee (*r)nrna-

where n, is the number of wmodes in the i th controller, n, is the number of
residual modes, and n, is the number of actuators employed. This allows

Eq 15 to be rewritten as

B, = [*°e¢ j=1,2, v.., N, 1 (23)

Y

In simpler terms, the rows of the ¢ 3 matrices represent the amplitude of
each structural mode along the line of action of each actuator location.

The dimension of the y 3 matrices is n, x n making the dimension of

3

the Bj matrices an xn when the upper null partition is included. Like-

wide it can be seen that the C_ .9 and Cv ¢ partitions of Eq 16 are of

P] 3
dimension n. x nj where L is the number of sensors employed. This makes

the dimension of the Cj matrices n, x an.

Examining the C, matrix more closely, the C 3 and cvj teras are the

] P
position and velocity coefficient matrices, respectively, of the sensors
employed, assuming that both position and velocity sensors are used.

HBowever, in this study, ouly ppsition sensors are used. This makes the

cvj into sero matrices so that Eq 16 now becomes

26
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- 0 =1, 2, ..., 24
¢, [cpjo. ] 3 N r (24)

Furthermore, when collocated sensor/actuators are employed with the same

aligument, this simplifies even more. In this special case

. - — “
T T
cpjo = | ¢ nj (25)
R L T
[~ ﬂ S
C_.¢ = Y (26)
1 5 i
L - L 4
so that _
T .
cj - v : 0] j=1,2, ..., N, T (27)
L i .
This simplicity is the prime advantage of using position sensors only.
T
As was pointed out in the Bj matrix, the columns of the ?j wmatrix in

Cc g represent the amplitudes of each structural mode at each sensor location
along the line of the sensor.

The equations thus derived are very general in form and are indepen-
dent of structural complexity. Only the matrix dimensions will vary
depending on the number of sensors, actuators and modes studied. This
general development can lead ore to understand the wide variety of
structures to which the following analysis may be applied.

Modal Control

The controller design for N controllers will be based upon the model

given by Eqs 11 and 13 which, restated, are

x, = A X +B u (11)
- N - -
y = 151 Cixi + crxr (13)

The state feedback control desired is of the form

u = I G x (28)
g=1 171
where G 4 are the control gain matrices. The development of the G 1 matrices
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will be presented shortly.

To form this active control u, complete knowledge of the state vector
is nseded. Unfortunately, direct measurement of the entire state vector
is impossible and the only measure of x is the measurement y given by
the sensors. As a result, it is necessary to develop a state estimator
vhich can take the observations y and produce an estimste of x. This can

be done by employing an observer of the form

\

x, = Ai‘i + Biu + li(y - ’1) (29)
Y, = Cx, (30)

vhere ;1 are the estimated states, ;1 are the estimated outputs and ‘1 are
the observer gain matrices. The ‘1 matrices are chosen such that the error

in the state estimate

¢, = x, -Xx (31)
is asymptotically stable. HNow, the control vector, in terms of the esti-

mated state is given by

3. 151 6, xi (32)

Rquations 11, 13, 29, 30 and 32 represent the control problem for a large
spece structure.

Before proceeding amy further, time will be taken now to develop the
comtrol gain matrices Gi and observer gain matrices ‘1‘ For this, linear
optimal regulator theory (Rei 9) is used. ‘!.Incontrolpinutttxc is
derived first, starting by defining a quadratic performance index J
such that

J-l./ @ Tox +eTRD e (33)




o — e

vhere

Q is an n x n positive semidefinite weighting matrix
R is an m x m positive definite weighting matrix
It is desired to minimize this index subject to Eq 11. Then, the optimal

solution to the minimization problem is
G,=-r, ~BIS (34)

wvhere S1 is the solution to the steady state matrix Riccati equation:

T -1 T
SIAI +Ai Si- siniki Bi Si *Qi = ( (35)

Realizing that the eigenvalues of the matrix (Ai-KiC 1) are the same as

the eigenvalues of its transpose (A T-C TK T), a similar development ma
i 1™ y

- ——

be used for the observer gain matrices Ki. An equation for the system

similar to Eq 11 can be written using the state w:

AT, - ¢Tg (36)

8 - k7T @ (37)

Again, using linear optimal regulator theory, a quadratic performance index

is defined:

- - - -T -
J= k / ' Qupy ¥y * 85 Ry 8y) dt (38
0

where Qob and Rob are weighting matrices as defined for Eq 33, but are not
necessarily the same exact matrices for the G1 matrices. It may be
desirable to weight the observation data more or less than the control
fesdback.

Continuing, Eq 38 is minimized subject to Eq 36 and the observation

| goin matrix is given by




K, = 4R C, P (39)

where Pi is the solution to the steady state matrix Riccati equation:

P, A + A, P -P C (40)

|

| T T -1 -

t 1 A 1 By TP € Ry G Py F Q=0
It may be noted that Eq 40 is, in effect, the transpose of Eq 35, which
follows since the observation gain matrix is developed from the transpose

of the system matrix (Ai - Kici)’

Equations 34 and 39 now form the control gains Gi and observation
estimator gains Ki to be used in their respective controllers, and are
deiermined such that each zontroller is stable. However, due to coupling
these controllers and observers are not independent. Therefore, even

though the G, and Ki matrices keep their individual controllers stable,

i
the overall system may be unstable.

This system instability, even with stable controllers, can be seen in
the following development. To begin, an N-controller system will be
illustrated. Then a three- and four-controller system will be shown. It
will become obvious that controller stability alone will not guarantee over-
all system stability. The one- and two-contrvoller systems were demonstrated
by Miller, and he proceeded as far as deriving the three controller case.

N Controller

For a multiple input multiple out controller, the state equations are

given by Eq 11 as

;1 - Ai§i+Biﬁ i=1,2, ..., N (41)

but for reasons stated earlier, an observer of the form given by Eqs 29

and 30 1is used

x, = Aix1 + Biu + Ki(y - yi) i=1,2, ..., N (42)’

30
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yi-Cixi i=1,2, ..., N (43)

-~

where tho subscript i denotes the i th controller, x

-

vectors and Yy the estimated output vectors.

{ the estimated state
The observation gain matrices Ki are chosen such that the state

estimate errors

Ia.i-xi-xi i=1,2, ..., N (44)

approach zero for large time. The control is then given by

N .
u= I G,x 45)
-y L4

Equations 42, 43, and 44 may then be combined with the state equation

given in Eq 41 to obtain the state estimate errors:

; -‘\ —; i - - r - =
e, = X, =X, (Ai Kici)ei + j§1 Kiijj i=1,2, ..., N (46) ‘
ik j=1,2, ..., N, T

Now, using the state equations given in Eq 41, along with the control

stated in Eq 45 above, the controlled state equations are given by
: - - N -
= L =
; X, (Ai + BiGi)xi + Biciei + 1= Biijj i 1, 2, ..., N (47) ;

3

The states ii and errors in the states Ei may be collectively

evaluated by the controlled system state presented as an augmented state

vector of Eqs 46 and 47. This vector z is given by

sz T 3T 3T T 2T T =T T (48)
RS TR I R e
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Writing out the closed loop state equations, in terms of z, gives

[ .
A+ B,Gy 3,6 — B6 BS - BG BG
0 A K G - KG 0 - KC 0 KC
z = B,G, B —- A#BG, BG, -— BG KC_ 0 z
K,C; 0 — 0 A~KC --- KC 0 0
: : : : : : : (49)
B G, B G, -~ BG, BG, -— A+BG BG O
K C 0 —  KG 0 —- o AaKCp KoC
nl ni
XA B G, —  BS BG —- BG BG, A

The system matrix may be either upper or lower block triangularized.
For upper block triadgular form, the spillover elimination required is
Bicj =0
and j=1,2, ..., N1;1=3+1, ..., N (50)
RCy = 0
and for lower block triangular form
Bicj = 0
and i=1,2, ..., N-1; =1 +1, ..., N (51)

Kicj =0

The block structure of Eq 49 can be more easily seen in specific exam- .
ple, therefore the three and four controller cases will now be examined.

Three Controllers

Setting N = 3 and following the form given in the previous development

32




for N controllers, the state equations for a three controller system

are given as

x - Alxl + Blu (52)
§2 - AZEZ + 326 (53)
Xy = AgXy + B (54)

where the subscripts designate the controller described by the equation.

The observer to be used is

x, = Aixi + Biu + Ki(y - yi) i=1,2,3 (55)

yi - Cixi i= 1, 2, k) (56)
Again, the observer gain matrices Ki are chosen such that the error in the
state estimates

e, = x; - X, i=1,2,3 (57)

are asymptotically stable. And now the control applied is given by

u = Glx1 + szz + G3x3 (58)

Using Eqs 52 through 57, the system's state estimate errors may be

shown as described in Eq 46 for N = 3:

. .

e, =x -x = (Al-chl)el + chzxz + ch3x3 + chrxr (59)
e, = X; = Xy = (A)K,Cre, + KyCpxy + KyCaxy + KCox (60)

e, =X~ x, = (A3-K3C3)e3 + K3C1xi+ K302x2 + KSCrxr (61)




.0

Combining the state equations and the control given in Eq 58, the states

~may now be described, as given in Eq 47 by

il = (A 4+ nlcl):':1 + nlclzl + B,G,X, + B G,X, (62)

iz - (A, + 3202)52 + 326232 + B,G X, + B,G X, (63)

§3 = (4, + 3363)i3 + n3c323 + n3c1i1 + 330222 (64)
and similarly

ir - Atir + Brclil + Btcziz + src3£3 (65)

Combining the system equations, presented in Eqs 59 through 65, into an

augmented state vector z,

=T =T =T =T =T =T =~T
z-{xl,el,xz,ez,x3,e3,xr}T (66)

the closed loop system equation may be given as

[ a+8,6, BG, BG, BG, BG, BG O i
0 AHKC KC, O K€, 0 ke
. B Bj6y  A*BGp Bjfp BGy  BSy O (67)
- X% 0 0 ARG KGO KG :
B,G, BG, B, ByG, Ap#B,Gy BG, O
K,C 0 K, O 0 AfBC, K,
N BrGl nrcl. | l’rcz Brcz B1.’(;3 Br°3 A1» _J

Eq 67 makes it very obvious that controller stability cannot guaran-
tee overall system stability. It is also easy to see that block triangular-

ization will be considurably more difficult to achieve. As before, either
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upper or lower block triangularization may be attempted. In either case
the resulting eigenvalues will be the same since they are determined by the
block diagonal terms. The observation spillover and control spillover terms
to be eliminated for both schemes are presented in Table VIII.

Table VIII

Spillover Elimination for Decoupling Three Controllers

Upper Triangularization or Lower Triangularization

B,G, = 0 B,G, = 0

B,G, = 0 B,G, = 0

B,G, = 0 B,G, = 0 1
KyC, = 0 KC, =0 |
K,C, = 0 K,Cy = 0

XGy = 0 L Tl
There are actually two methods of approaching the eliminatiom of spill-

over in the three controller system. The first of these deals with selective
Placement of the sensors. If the sensors are positioned in a proper manner,
the modal amplitude matrix ¢, and as a result, the system's B and C matrices,
will be of the form that a selective arrangement of controlled mode: will
make one controllerorthogonal to the other two controllers. In effect, this
reduces the problem to a two controller aystem since the twc controllers will
have no effect on a controller orthogonal to them. Then, only the spillover

terms between the two non-orthogonal controllers need be considered. This

was specifically demonstrated by Miller in his examination of a three con-
troller system.

To present an example, assume the controller three modes are ortho- H

gonal to the controller one and two modes. Then all cross terxs between

k)




one and three and two and three will be zero, which effectively reduces
Table VIII to the apillover elimination requirements:
for upper triangular form
‘z°1 =0 and ‘2c1 =0 (68)
and for lower triangular form
Blcz =0 and KC, = 0 (69)

It can be shown that these terms are the same as those required to block
triangularize the two controller system, thus demonstrating the three controller
reduction to a two controller system. However, since the intent of this study
is to examine a three and four controller system, this approach will not be
addressed further.

The second approach proposes that in the transformation a matrix r3 (or
rl) be found which will drive both K

301 and x3c2 (KIC2 and 1103) to zero, and

a matrix Tl (or 13) be found which will drive both 3261 and 3301 (3103 and
Bzcs) to zero. This process will be explained in the next chap?ir, however,
for now, it is not always possible to find transformation matrices which
will reduce the spillover terms to zero. Omn the other hand, it is also not
alvays possible to position the sensors such that there are two orthogonal
sets of modes to reduce the system to two controllers. Therefore, a
compromise is in order: If two clearly orthogonal sets of modes are not
available, the modes should be assigned so they are as nearly orthogonal

as possible. Then the transformation is performed on the full set of spill-
over terms given in Table VIII. This investigation will assume the modes
are not fully orthogonal, but still assign the modes to make the controllers
as orthogonal as possible, and attempt to find transformation matrices

which will make each spillover term in Table VIII approximately zero.
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Pour Controllers

The four controller development is fdentical to that of three con-
trollers, so the basic results only will be presented. The state equations
are given by setting N = 4 in Eq 41, and the observers are given by Eqs 42
and 43, again setting N = 4., The state estimate error is given by Eq 44

and the resulting control applied is

- - - -~

us= Glxl + szz + G3x3 + (;.,.1:4

To avoid repeating the equations already presented, suffice it to say
that the state estimate errors are of the form, given for the first con-

troller

e = xl -x - (Al-llcl)e1 + chzxz + chax3 + ‘1°a‘a + ‘lcr‘r (70)
and the full state equations are of the form, again given for the first

controller

x = (A1+nlcl)xl + '161‘1 +B Gz‘z +BG.x. +B

1 153%3 (71)

A
The remaining three controllers' errors and states may be derived from
Eqs 46 and 47, respectively.

These may be combined into the comtrolled system state vector z,

defined as

= f=T =T =T =T =T =T =T =T =T T
z = {xlr, CIT, X czr, Xys €3y X0y €0, X } (72)

aand the closed loop system equations may be given as




r;1+llcl ‘161 BIGZ 81G2 3103 31G3 '164 BlG4 0

o AI-KIC1 K1C2 0 K£C3 0 ch4 0 chr

BZG1 BZG1 A2+32C2 BZG2 3263 3203 3264 BZGa 0

: =| 2% 0 0 ARG KGO0 L% 0 K&z
3361 3361 3362 B3G2 A3+B3G3 3363 5364 3364 0
' (73)

x3c1 0 K3CZ 0 0 A3-K3C3 K304 0 K3Cr

3461 nacl 3462 3462 8463 34G3 A4+B4G4 B4G4 0

chl 0 K4C2 0 KAC3 0 0 AQ—KACA K‘.Cr
L?tcl Brcl BrGZ BrGZ Brc3 BrG3 Brcb Brca Ar__

The spillover terms to be eliminated are given in Table IX, and
correspond to the conditions given in Eqs 50 and 51. It 1is apparent this
system is more difficult to block triangularize than the three controller
system. However, a prime advantage to using additional controllers is the
number of modes to be controlled may be divided among more controllers.
This reduces the order of each controller thus reducing the burden on the
computer. This is especially important in solving the matrix Riccati equa-

tions, Eqs 35 and 40, since the computational burden is approximately the

cube of the order of the equation (Ref 3).




A Table IX
Spillover Elimination for Decoupling Four Controllers

Upper Triangularization or Lower Triangularization

3261 =0 chl =0 BIGZ = 0 KICZ -0
B3G1 =0 K3C1 =0 8163 =0 KIC3 =0
l B3G2 =0 K3CZ =0 BIG4 =0 K104 =0
3401 =0 K&CI =0 5263 =0 K2C3 =0
?402 =0 K402 =0 Bzca =0 chb =0
3663 =0 K‘C3 =0 B3G4 =0 K3C4 =0

Sensor/Actuator Requirements

As mentioned for three controllers, in order to perform spillover

suppression, one or more gain matrices must be made orthogonal to N-1

B or C matrices. For example, from Eq 50, to satisfy the expression
for Bicj the columns of G1 must be simu'taneously orthogonal to the rows
of 32 through BN' In order words, the columns of G1 must be in the

null space of the matrix BZN wvhere BZN is defined as

BZN- sesece (74)

The null space of B, has dimension qu given as

2N

P (75)

x " (n. - rZN)
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n, = number of actuators

<
Iy rank of BZN - min (n2 + n, + o0 + oy na)
Therefore, G1 has PZN columns.
The number of actuators must exceed the rank of B.. in order for

2N
an G1 = 0. Ocherwise the system is overspecified and no transformation

-

matrix exists which will drive the BZN Gl to zero. If the rows of BZN

are linearly independent. then the number of actuators needed is given as

N
n > L n
a 1=2 i (76)

and if the rows are not linearly independent, n‘>r2 It can be seen

NC
that the other control gain matrices will have a sufficient number of

actuators is the inequality in Eq 76 is met". A similar study shows that

the number of sensors needed is, for C2N with linearly independent columns ‘
N-1
n > I n (77)
s =1 i

a4 far coluens that are not linearly independent, n> THn where Ton

here is the rank of Cz'.

Likewise, for the lower block triangular conditions given in Eq 51,
the actuator snd sensor requirements can be shown to be

N-1
n > L n

i=1

(78)

(79)

for linearly independent rows and columms of the '28 and cZN matrices,
respectively.

It should be pointed out that satisfying the inequalities given in
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Eqs 76 through 79 may actually require more actuators and sensors than
j indicated. As an example, consider a-thirty modé model. Using three
| controllera, each with ten modes, the above inequalities require at least
twenty sensors and twenty actuators to assure decoupled system stability.
However, to control and observe the system, at least one more sensor and
actuator would be required. These conditions must be met in order to

generate the transformation matrices and to implement the controllers.
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IV. Transformation Technique
It has been mentioned several times that the close loop state equa-

tions, Eqs 49, 67 and 73, will be put into block triangular form by
the selective elimination of control and observation spillover temms.
However, the exact details of thi» spillover elimination have been
neglected until now. The following will describe the generation of the
transformation matrices, which were referred to specifically as T and T
in the previous section. The T matrix is a transformation matrix for the
control spillover and the I matrix is a transformation matrix for the
observation apillover.

In a single controller case, it can be seen that the spillover terms
which, when eliminated. will assure system stability are BSG or
lc’, vhere the s subscript designates wmodes to be suppressed. An immed-
iately obvious solution to this is G = 0 or K = 0. But this solution will
make the respective controllability term ncc, or observability term
ch, equal to zero also. Therefore, this solution is unsatisfactory. ive

transformation method generates a solution which for a single controller,

is subject to the conditioms:

BG=0 (80)
or
KC. =0 (81)

vhile maintaining

BG# O (82)
or
KCc ¢ 0 (83)

It would slsc be desirable to apply the additionsl comstraint to the
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residual modes
B!G a (84)

xcr =0 (85)

however, due to the large number of structural modes present in the model,
this constraint is not realistic and will be ignored in this development.
The effects of the residual spillovers may be minimized by the careful
selection of modes designated as residual or suppressed, so as to create
a frequency separation between the residuals and the bandwidth of the
controller.

For a multiple controller, the conditions given in Eqs 80 and 81
apply, dut now the Bs and C' matrices may take on the form illustrated

by Bq 74 and will be referred to as the B, and C,  matrices. Instead of

iN iN
discussing all of the possible combinations of BiN and Cm for N con-

trollers, take as an example the first condition given in Eq 50, that is

‘1Gj =0 j=1,2, ..., N1; i=3+1, ..., N (86)
Given N controilers, G1 will have to be made orthogonal to N-1 Bi matrices.
The N-1 '1 satrices may be combined into a single matrix such that
o ﬂ
B
B3
Boy = : (87)

Theraefore, one of the conditions to be met is ‘Zn G1 = 0. In other words,
the Gl matrix myst be transformed auch that its columms are orthogonal to

the roww of '2!’ or, as stated in the previous section, G1 must be in the
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null space of BZN' This is the most difficult case for N controllers and
is presented only to describe how the multiple matrix is set up. The
remainder of the derivation will be in terms of a generic Bs matrix which
represents BZN and BZ alike.

The transformation matrix sought will be referred to as T and will be

such that

BT = 0 (88)

Bs has the row dimension of n, (the number of modes to be suppressed) and
the column dimension of n, (the number of actuatours). T, therefore, has
dimensions of L by no-mn. If there are fewer actuators than linearly
independent modes, then no solution matrix T exists. The system is over-
specified in t.is case, meaning there are more equations than unknowns.
If the number of modes and actuators are equivalent, then the system is
stable but uncontrollable (or in the case of the KC matrices, the system is
stable but unobservable assuming an equal number of sensors and actuators).
The actuators (sensors) are saturated with maintaining stability alone.
Simply stated, the conditions given in Eq 76 and 77 must be met in
order to generate a transformation matrix.

To 1llustrate the result of applying the transformation matrix described

above, consider the following system of controlled and suppressed modes:

X =Ax +Bu (89)
c e c
x, = Ax + Bu (90)
where
%=Gx (91)
c¢'e

The B.ﬁ term of Eq 90 is a control spillover term which may be adversely
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affected by the control applied to Eq 89. The elimination of this term

requires the use of a transformation matrix T such that

BT =0 92)
s

while maintaining

BT+4O0 (93)
c

This transformation matrix may be used to define a new control v as
u=Tv (94)
Inserting this expression into the state equations given in Eqs 89

and 90 yields
X =AXx +BTv (95)
c cc c

Xx_ = AX_+ BTV (96)
s s's s
Letting BcT = B* and knowing that BST = (0 the new system is described by

X =AX + B* 97)
[} cc [

i = A X (98)

in which no controller spillover exists. The new control vector will be
shown to be

-~

; = Gy (99)
cc

With this general overiew of the tranformation process and its results,
the development of the matrix T will now be discussed.

The major tool used obtaining this result is called the Singular
Value Decomposition (Ref 4). The matrix to be decomposed is Bs which has

dimensions n,xn, and can be described by

T
B, = WIV (100)




( where
| W is an (nm x um) orthogonal matrix of left singular vectors
V is an (na x “a) orthogonal matrix of right singular vectors
and
%L is an (nm x na) matrix with the s gingular values of Bs
in the first s entries along the main diagonal and zeroces
in all other positions:
s . 0
T - (101)
0 . 0
H n xn
m a
such that
{ Oy O eeeves O
1
S = ° 9% (102)
.o »
o
s
The total number of singular values present is equal to the rank of the
Bs matrix, and they are all non-negative. Assuming Bs is of full rank, then
s = min (n‘, nm).
By partitioning, the W matrix can be defined by
w-[w9 : wt:] (103)
where
W‘ is a. n xs matrix of left singular vectors associated
with the non-zero singular values
(
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Wr is an n xrT matrix of left singular vectors associdted

with the zero singular values

| and
F s+r=n (104)
Similarly, by partitioning, the V matrix can be defined by
Ve v v (105)
where
Vs is an s x n, matrix of right singular vectors associated
with the non-zero singular values
Vp is a p x n, matrix of right singular vectors associated
with the zero singular values.
and

s +ps= na (106)

Remembering the V matrix is orthogonal and noting then that

V'V =90 (107)

the decomposed matrix may be written as

S T = =
BsT = W‘a Vs Vp Bs Vp 0 (108)

which leads to the conclusion that the transformation matrix desired is
given in the matrix of right singular values associated with the zero
singular values:

T=V 109
P (109)

where T # O.

Once the transformation matrix is found, implementation is relatively

simple. Equation 94 defined a v, as the new control input vector. This

i

is now given as
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(110)

The GI matrix is found in the same manner as in the Modal Control section

of Chapter III in which

-1 T
® = R% *
G1 Ri B1 Si (111)
where
R¥* T
i 'l‘1 Ri 'l‘i (112)

Ri is the pesitive definite weighting matrix in Eq 33

* =
Bf = BT, (113)

and Si is the solution to the matrix Riccati equation:

S. A, + AT 5, - s, B*R¥L Bl g

1 1 54 g BY RY 1 +Q =0 (114)

i
Simple manipulation of Eq 111 will show that the transformed gain matrix is
finally given by

* =
G1 '1'1 Gi (115)

Substitution of this back into the state equations yields a closed loop
system which is block triangular with no control spillover.

This technique may be paralleled to obtain a I' transformation matrix
for the observation gain to eliminate observation spillover. Substituting
CsT for Bs’ KT for G and T for T will give the same results with T equal
to Vp. Ohterwvise, a new derivation using Cs and K will give the result
that the observation gain transformation matrix ' is equal to the
transpose of the matrix wr of left singular vectors associated with the
zero singular values of Ca' Here, as alluded to earlier, the number of

sensors must be greater than the number of modes to be suppressed.
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V. Computer Model
Simplicity and flexibility were prime considerations in the develop-

ment of the computer programs. The general format given by Miller was
followed as it provided a very simple progression of logic.

Two programs, using the same logic, were created. The same control
techniques are applied, however, the spillover «limination schemes used
are different. One provides decoupled control by reducing the closed
loop state equation matrix, given in form by Eq 49, to an upper block
triangular form. The other reduces the matrix to a lower triangular
form. It was deemed unnecessary to combine the two into one program with
an input selecting ore or the other since the eigenvalue results provided
by both programs are identical. In fact, by renumbe: ing the controllers
in the spillover elimination portion of one program, the opposite trans- ‘
formation is achieved. For example, in the upper trinagular three controller
sylte-,.the spillover terms to be suppressed are given in the first column
of Table VIII. By inverting the first column subscripts such that 1, 2,
3 becomes 3, 2, 1, it can be seen that the resulting spillover terms are

identical to those in the second column for a lower triangular transforma-

tion. The subscript inversion is equivalent to renumbering the controllers
in the transformation portions of the program. For this reason, only the
program for the upper block triangular controlled system is presented.
This is listed in Appendix C. The subroutines which support this program
are given in Appendix D. Several other subroutines are called but not
listed. These are provided by the International Mathematicsl and
Statistical Library (IMSL).

Since progres flexibility is desired, once the modal data is loaded,

the program is designed to make any number of runs with different para- )
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meters for each run. The parameters that may be varied by the operator

include: using a three or a four controller aystem, which wodes are

assigned to each controller, what control and observer weighting values

to assign to each mode, and what initial system damping ratio is applied.
The program may read the input data from initialization assignments

within the program or from a permanent data file. In either case, the

program operates as if it were interactive by prompting for input and

then echoing the data read in. Th‘s makes the output very easy to interpret

by allowing the user to trace the computur’s progress through the execu-

tion of the program.

The program is initjalized by inputting the number of controllers

desired and then the number of modes in each controller. If three con-
trollers are used, the number of residual modes will be requested, other-
wise the fourth controller system is run without residuals. Next the
number of actuators and sensors are input, along with the wodal damping
ratio ;. For the models studied, the sensors, actuators and open loop
damping applied were obtained from previous studies. CSDL 1 was tested
with six actuators, six sensors, and a damping ratio of 0.005 (Ref 7),
and CSDL 2 was tested with twenty-one actuators, twenty-one sensors,

and a damping ratio of 0.01 (Ref 10). The program will then read from
a permanent file the matrix (OTD) of modal amplitudes at each actuator
location, followed by the transpose of the matrix of modal amplitudes at
esch sensor location. In this study, these two matrices are identical
since colocated pairs of actuators and sensors are employed. The sensor
modal amplitude matrix is input in transposed form so that the matrix
for a colocated system may be copied directly from the actuator wodal

smplitude m-irix. However, these are left as separate entries in the
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event the actuators and sensors are not colocated. Finally, the modal
+ frequencies are read in from the permanent file. After this preload of
data, the desired run is made by specifying which modes are to be con-
trolled by each controller and which modes are to be left as residuals,
along with the desired control and observer weighting values for each
mode. Additional runs may be made in the same job by specifying

different modal arrangements, weighting assignments or controller

configurations.

Program execution actually begins with the formation of the A, B,
C and weighting matrices for each controller. This is conveniently done
by subroutines which read the required data for the modes specified. These

subroutines allow the operator to change the size of the controllers as

needed simply by specifying the number of modes to be placed in each
controller.

Once the initial matrices are formed, the control and observation feed-
back gain matrices, Gi and Ki respectively, are determined using a series
of subroutines which generate a numerical solution to the matrix Riccati
equation. These sophisticated routines were created by Kleinman (Ref 11)
and so are known as the Kleinman routines. The G1 and Ki matrices, along
with the parameter matrices, A, B, and C, are then combined to form the
closed loop system matrix, as given in form by Eq 49. This particular
program develops the three controller system with residuals as in Eq 67,
but unlike Eq 73, does not include residual terms in the four controller
systems.

The eigenvalue analysis of the system is performed next, making use of
the ISML routine EICRF which determines the eigenvalues of real non-symme-

tric metrices. Pirst, the eigenvalues of the overall system matrix are
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generated to show the stability of the full system. Then the eigenvalues
of the A + BC and A - KC matrices for each controller are found. These
values demonstrate the effectiveness of the individual controller and
show which modes were affected most. Last, for the residual modes,

if any, the eigenvalues of the A residual matrix are given.

Spillover elimination is the next step in the control algorithm. This,
too, varies with controller configuration, but also varies with the form of
triangularization selected. The 3 or 4 controller variation is accomoda-
ted by the program, b'it the type of triangularization selected determines
which of the two programs is used. This selection is more a matter of
operator preference than system requirement, though, since the upper and
lower block triangular reductions yield results identical to several deci-
mal places. Regardless of the program selected, the spillover elimination
1s a rather lengthy portion of the program. The modes to be suppressed are
formed into non-zero Bs and CsT matrices of the form given in Eq 87. The
IMSL routine LSVDF is used to perform a singular value decomposition on these

matrices. By using the left singular vectors associated with the zero

singular values of Bs and CTS, the transformation matrices ‘l‘1 and Pi are

formed. The program then loops back with the transformation matrices and
these are applied as discussed in Chapter IV to create new gain matrices,
Gi and KI. A nev closed loop system, which has the selected block trian-
gular form, is generated and the eigenvalue analysis is repeated. In this
analysis, all of the individual controller eigenvalues should be matched
by identical eigenvalues in the overall closed loop system, whereas, in the

first analysis there may be minimal correlation, depending on system

coupling.




The difference in sizes of the two models examined using these pro-
grams demonstrate, to sowme extent, the high degree of flexibility of the
control method applied. The only.change that needs to be made to adapt
the method for another structure is the basic matrix dimensioning in the
program. Nothing else has to be altered, as long as the system model

can be defined by

= Ax + B (116)

y = Cx 117)
as discussed in Chapter III. Thus, the ease of application of the control

method heretofore described can be seen. Now, the performance of control

method will be examined using the programs' eigenvalue analysis results.




VI. Investigation

Control of a large flexible space atructure is a complicated task that
is best taken one step at a time. Therefore, a systematic, building~block
approach was used to conduct the study. Miller's work concentrated on one
and two controller systems. This investigation is the next logical step in
the process, concentrating on the three and four controller systems.
Outline

The initial phase of this study concentrated on the control of the
CSDL 1 model using three controllers with no residual terms. The first
eight structural modes were used in this analysis, and the control weight-
ing matrix was fixed at Qi = 20 [il\].

Next, the residuals were added to the system, utilizing the last four

structural modes of thz CSDL 1 model. With this, the full twelve wmode
model was implemented.

The residuals were then incorporated into a controller to form a

four controller system without residuals. Again, the full twelve mode

model was used to test the new system.

Once satisfactory results were obtained using the CSDL 1 model,

the program vas expanded in dimensions to accomodate the CSDL 2 model.

H A twelve mode subset of the modeled modes was used for this segment of
the study. The selection of this subsat of modes will be explained in
the next section. Since twelve wodes were used in both models, the in-
crease in dimensions was dictated by the number of semsors and actuators
used in the second wmodel. Therefore, all matrices were expanded to a
ninimum dimension of twenty-one, as can be seen in the dimemsioning por-
tion of the program in Appendix C.

( It vas desired to control all twalve modes of the CSDL 2 model,
therefore, no residual modes were included in this phase of the study.
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Three controllers were used with a control weighting matrix of Qi -
20 [‘ 1 ] )
.

To obtain desired control characteristics, the values of the
control weighting matrix were varied and the resulting eigenvalue move-
ments were observed. Three of the twelve modes are rigid body modes,
therefore the weightings on these modes were varied first, keeping
the value of 20 for all of the flexible modes. Then the values of the
weightings for the flexible modes were varied individually to see what
effect this had on the system's controllability and observability.

Finally, the CSDL 2 model was run using the four controller system.
The control weightings were varied just as in the three controller systea
to determine if there were any significant changes in the system's con-
trollability or observability. The results of the preceeding outline
will be presented shortly.

Modal Selection and Grouping

One of the more difficult tasks in controlling a large space struc-
ture is the determination of which structural modes are to be actively
controlled and which are left as residuals. Factors which affect this
selection process include sensor/actuator placement and alignment,
controller bandwidths, and control comstraints such as line-of-sigh.
tolerances.

For multiple controllers, an additional step has to be taken. This
is the assignment of the modes to be controlled to minimize the comtrol
effort. Organizing modes into compatible groups can be dome by a
simple examination of the angles between thc vectors of modal amplitudes
(the sngles between the rows of the OTD satrix). Defining these vectors
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as ¥ 1 the angles may be found from the equation for the dot product of

) two vectors, given by

;1 . *j - cos 8 (118)

[o] e o

The modes are then grouped so no two orthogonal modes are in the same

controller. In some cases the grouping of orthogonal modes in the same

controller is unavoidable. Angles smaller than +45 degrees were used

in this study when possible, however, in some cases the limit was

extended to +70 degrees.

CSDL 1. Selection of the modes to be controlled in the first model
was not a difficult task as there are only twelve modeled modes for the
structure. As noted earlier, the first eight modes were originally
selected for active control. The last four were initially left as

i residuals, but were later used as controlled mcdes. Hence, the full
system vas eventually controlled with no residual modes. The assigmment
of modes to controllers was made based on the relative angle mode angles
given in Table X. The actual groupings are presented case by case in the
next section.

CSDL 2. The selection of modes for the second model, on the other
hand, was not a simple task. There are well over one hundred catalogued
modes at present, however, only a small subset of the modeled wmodes
were selected for active control. The first forty-four modes are
generally used to demonstrate the structural behavior and a subset of
twvelve modes was salected from these. The specific modes were chosen
as a resylt of a study conducted by Lockheed and sponsored by Rome Air
Development Center (Ref 10). This study used a High Authority Control

( msthod and based its modal selection upon the line-of-sight and defocus
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Tai:le X
Relative Angles* Between CSDL 1 Modes
Mode 1 2 3 4 5 6

1 0.00 90.00 90.00 66.40 90.00 90.00

2 90.00 0.00 64.33 90.00 96.61 90.00

3 90.00 64.22 0.00 90.00 85.25 90.00

4 66.40 90.00 90.00 0.00 90.00 90.00

5 90.00 96.61 85.25 90.00 0.00 90.00

6 90.00 90.00 90.00 90.00 90.00 0.00

7 33.23 90.00 90.00 99.63 90.00 90.00

8 90.00 50.12 111.44 90.00 84.38 90.00

9 90.00 147.39 145.07 90.00 77.97 90.00

1 10 51.52 90.00 90.00 14.88 90.00 90.00
11 90.00 84.91 61.82 90.00 23.47 90.00
12 90.00 108.20 89.58 90.00 11.63 90.00

Mode 7 8 9 10 11 12

1 33.23 90.00 90.00 S51.52 90.00 90.00

2 90.00 50.12 149.39 90.00 84.91 108.20

3 90.00 111.44 145.07 90.00 61.82 89.58

4 99.63 90.00 90.00 14.88 90.00 90.00

5 90.00 84.38 77.97 90.00 23.47 11.63

6 90.00 90.00 90.00 90.00 90.C) 90.00

7 0.00 90.00 90.00 84.75 90.00 90.00

8 90.00 0.00 97.28 90.00 92.36 92.83

9 90.00 97.28 0.00 90.00 98.79 68.88
10 84.75 90.00 90.00 0.00 90.00 22.09
11 90.00 92.36 98.79 90.00 0.00 30.09
12 90.00 92.83 68.88 22,09 30.09 0.00

#*all angles in degrees




Table IX
Relative Angles* Between CSDL 2 Modes
Mode 4 5 6 7 12 13
4 9.00 89.09 90.00 90.01 90.09 123.20
5 89.99 0.00 67.47 175.39 116.85 90.05
6 90.00 67.47 0.00 115.31 0.00 89.99
7 90.00 175.39 115.31 0.00 60.67 89.69
12 90.00 116.85 104.01 60.67 0.00 89.69
13 123.20 90.05 89.99 39.95 89.69 0.00
1?7 107.48 89.97 90.04 90.02 90.02 61.22
21 90.05 106.57 116.99 73.19 102.77 90.07
22 90.01 116.23 91.57 66.49 68.57 89.87
28 39.16 87.89 89.41 92.45 96.61 104.90
in 81.12 87.94 89.27 92.35 95.63 73.29
Mode 17 21 22 24 28 30
4 104.48 90.05 90.01 90.01 39.16 81l.12
5 89.97 106.57 116.23 90.16 87.89 87.84
6 90.04 116.99 91.57 80.13 89.41 89.27
7 90.02 73.19 66.49 90.68 92.45 92.35
12 90.01 102.77 68.57 111.87 96.61 95.63
13 61.22 90.07 89.87 90.15 104.90 73.29
17 0.00 89.91 90.15 89.96 80.56 127.80
21 89.91 0.00 93.88 38.05 93.50 93.10
22 90.15 93.88 0.00 103.22 90.51 90.74
24 89.96 38.05 103.22 0.00 94.15 93.50
28 80.56 93.50 90.51 94.15 0.00 89.82
30 127.80 93.10 90.74 93.50 89.92 0.00

*all angles in degrees
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equations given by a TRW study (Ref 12). The line-of-sight and de-
focus algorithm is presented in Appendix E. )
The modes used in this investigation contain three rigid modes--

labeled 4, 5, and 6--and 9 flexible body modes--labeled 7, 12, 13,

17, 21, 22, 24, 28, and 30. These modes were selected by Lockheed as

having the greatest impact on line-of-sight and defocus, based on che

equations given in Appendix E, and so were adopted for this study.
Applying the relationship given by Eq 118, the angles between the

twelve modes are given in Table XI. The actual groupings selected will

be presented case by case in the following section.




VII. Results

For the CSDL 1 model, the open loop damping applied was 0.005.
Earlier studies of the model showed that a closed loop damping of 0.10
on each mode was needed to meet pointing requirements. Therefore, a
minimum of ten percent damping became the desired parameter for accept-
able system performance. Due to unresolved problems with the computer
subroutine for a time response, line-of-sight performance could not be
evaluated, hence, the closed loop damping is the only numerical perfor-
mance parameter available.

Calico and Miller determined that a control weighting matrix of
Q=20 [\I\:I was sufficient to meet the ten percent damping require~
ment for one and two controller systems. This Q matrix was adopted as an
initial value in this study.

From Table X, the most favorable modal groupings for a three con-
troller are given by

Group 1: 2, 3, 8, 9

Group 2: 5, 6, 11, 12

Group 3: 1, 4, 7, 10

Mode 6 was found to be mutually orthogonal with every other mode. 1Its

placement is based on the recommendation that the last four modes be
treated as residuals. Without mode 6, the second group would corisist of
mode 5 alone. Therefore mode 6 is placed in the second group and the
resulting groupings are

Group 1: 2, 3, 8

Group 2: 5, 6

Group 3: 1, 4, 7

*
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Residuals: 9, 10, 11, 12

The first test was performed without residuals to insure that chg
transformation portion of the program would successfully block triangular-
ize the system through spillover elimination. The resulting eigenvalue
analysis is presented in Table XII. The overall system eigenvalues
are given and are arranged by their respective controller assignments.

The individual modes may be identified by the imaginary parts of the eigen-
values, as these are approximately equal to the modal frequencies. This
particular system was stable and very well damped (average damping of
thirty percent) before transformation. After the transformation, stabi-
lity was maintained, as expected, and there was a notable loss in damping
on three modes. There was an overall movement of eigenvalues to the

right, meaning after the transformation there was less system stability.
Nevertheless, the transformation succeeded in reducing the system to a
block triangular form, which was the intent of this step.

It should be pointed out that the results given were obtained using
an upper block triangular transformation. A lower block triangular trans-
formation yields the same overall system results, but the controller
eigenvalues are presented differently. When examining the A + BG and
A - KC eigenvalues for each controller, those eigenvalues for A +BG
in an upper triangular system are equal to those for A ~ KC in a lower
triangular system. Likewise, those eigenvalues for A - KC in an upper
triangular system aré equal to those for A + BG in a lower triangular
system. Table XIII presents the separate controller eigenvalues for
the system given in Table XII. The upper and lower block triangular

systems are presented side-by-side to show controller relationships.
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Table XIT
CSDL 1 Overall Eigenvalue Analysis - 3 Controllers

Modal Assignment
Controller 1: 2, 3, 8 Controller 3: 1, 4, 7

Controller 2: 5, 6 Residuals: None

Overall System Eigenvalues

Before Transformation After Transformation

Controller 1

h( -1.5814 + 5.591861 z = 0.283 -1.4503 + 5.526401 ;= 0.262
-1.4394 + 5.369981 z = 0.268 -1.5096 + 5.502781 ¢ = 0.274
-.82780 + 2.995711 r = 0.276 -0.0895 + 2.96361i ¢ = 0.030
-1.0125 + 2.720861 z = 0.372 -0.9389 + 2.840611 ¢ = 0.319
-.44731 + 1.506291 z = 0.297 -0.4183 + 1.447054 ¢ = 0.289
=.54119 + 1.395841i z = 0.387 ~0.4969 + 1.442171 g = 0.345 ‘
Controller 2
-.16127 + 4.909651 r = 0.328 -1.6127 + 4.909651 z = 0.328 1
-1.6126 + 4.909621 r = 0.328 -1.3253 + 4.876324 ¢ = 0.272
-1.2041 + 3.837021 ¢ = 0.314 -0.7383 + 3.872764 z=0.191
~1.3672 + 3.488991 z = 0.392 -0.0192 + 3.848341 z = 0.005
Controller 3 h
-.15673 + 5.460781 z = 0.287 -1.5672 + 5.460751 z = 0.287
-1.567? + 5.460751 z = 0.287 -1.3751 + 5.45811 gz = 0.252
-1.0420 + 3.426331 z = 0.304 -0.5452 + 3.558661 ¢ = 0.153
-1.0420 + 3.426321 z = 0.304 -1.0419 + 3.426324 z = 0.304
-.34014 + 1.163961 z = 0.292 -0.1766 + 1.1693314 ¢ = 0.151
-.34014 + 1.163964 z = 0.292 -0.3401 + 1.163961 ¢ = 0.292




Table XIII
Upper and Lower Triangular Transformation
Comparison of Controller Eigenvalues
Modal Assignment
Controller 1: 2, 3,8 Controller: 1, &4, 7

Controller 2: 5, 6 Residual: None

Transformed Controller Eigenvalues

Upper Block Triangular Lower Block Triangular

A+BG1 A+B1
=1.4503 + 5.526401 -1.5096 + 5.50278i
-0.0895 + 2.963611 ~0.9389 + 2.840611
-0.4183 + 1.447054 -0.4970 + 1.442181

A-KC1 A-XKC1

-1.5096 + 5.502781

-0.9389 + 2.840611

-0.4970 ¥ 1.442181
A+ BG 2

=1.3253 + 4.876321
-0.7383 + 3.872764

A-KC2

-1.6127 + 4.909641
-0.0192 ¥ 3.848341

A+ BG3
-1.5672 + 5.460751
-1.0419 ¥ 3.426321
-0.3401 ¥ 1.163961
A-KC3
-1.3751 + 5.458114

-0.5452 ¥ 3.558661
-0.1766 * 1.169331

-1.4503 + 5.526401
-0.0895 + 2.963611
-0.4182 ¥ 1.447054

A+ BG 2

-1.6127 + 4.909641
-0.0192 + 3.848341

A-KC2
-1.3253 + 4.876321
-0.7383 * 3.872761
A+ BG 3
-1.3751 + 5.458111
-0.5452 * 3.558661
-0.1766 + 1.169331
A-KC3
-1.5672 + 5.460731
-1.0419 * 3.426321
-0.3401 % 1.163964




Next, the four residual modes are added to complete the model. It
was desired to see the movement of the residuals, if any, caused by the

spillover elimination. The eigenvalue analysis for this step is pre-

sented in Table XIV. As before, there is a slight sacrifice in the closed

loop damping during the transformation, but only two modes exhibited
losses below the ten percent mark. The first of these is due to a
decrease in controllability in the first controller, which is expected
to occur. The second is believed to be a result of the pairing of modes
5 and 6 in the same controller. This is supported b: several different
groupings with and without modes 5 and 6 together. The drastic reduc-
tion in the controllability and/or observability in mode 5 is not seen
vhen modes 5 and 6 are in separate controllers. Therefore, this indi-
cates a bad grouping of modes, but system stability was not totally
sacrificed. Overall, the requirement of ten percent damping in all
modes was met. The residuals, although less stable, did not become
unstable, and maintained the 0.005 damping originally applied to the
system.

To maintain the parsllel examination, the same modal grouping was
then contrclled using four controllers. As before, damping applied
vas 0.005 and the control weighting matrix was Q = 20 [.I ] . The
resulting eigenvalue analysis is given in Table XV. Again, : loss in
damping occurs during transformation for the first three controllers,
but the fourth controller actually show some improvement in damping
on the modes which were previously residuals. Also, for the first time
duriag this study, the dsmping on one mode in the first controller

dropped below the original open loop damping, this being mode 3. The
e,
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Table XIV
CSDL 1 Overall Eigenvalue Analysis - 3 Controllers

Modal Assignment

Controller 1: 2, 3, 8 Controller 3: 1, 4, 7
Controller 2: 5, 6 Residual: 9, 10, 11, 12
Overall System Eigenvalues

Before Transformation After Transformation

Controller 1

-1.5082 + 5.608771 £ = 0.269 -1.3875 * 5.69418L % = 0.244
=1.1542 4+ 5.364104 ¢ = 0.282 ~-.15842 + 5.36287L % = 0.295
-1.2334 ¥ 3.187031 ¢ = 0.387 -0.0903 ¥ 2.96069L & = 0.030
-1.1119 + 2.601291 & = 0.427 -0.9482 + 2.81358L % = 0.337
-0.3482 + 1.586074 ¢ = 0.219 -0.3555 * 1.526761 % = 0.233
-0.6579 + 1.350474 § = 0.487 -0.5482 * 1.383564 ¥ = 0.396
Controller 2
-1.6126 + 4.909654 ¢ = 0.328 -1.6127 * 4.909654 § ™ 0.328
-1.6126 + 4.909621 ¢ = 0.328 -1.3253 * 4.876321 & = 0.339
-1.0697 + 4.013421 ¢ = 0.267 -0.0192 * 3.843841 T ™ 0.005
-0.8339 + 3.772431 ¢ = 0.221 -1.0692 * 3.353191 ¢ ™ 0.319
Controller 3
-1.5124 + 5.512874 § = 0.274 -1.6097 * 5.522974 ¢ ™ 0.291
-1.6183 + 5.412924 £ = 0.299 -1.3595 * 5.388131 § ™ 0.252
-1.4846 *+ 3.404981 ¢ = 0.436 ~0.7383 ¥ 3.872761 % ™ 0.191
-0.6912 + 3,202524 ¢ = 0.216 -0.5112 ¥ 3.664041 T ™ 0.140
-0.2689 + 1.220061 & = 0.220 -0.3381 * 1.187364 & = 0.285
=0.4152 + 1.1230414 ¢ = 0.370 ~0.1719 * 1.13705¢ % ™ 0.151
Residual
-0.0701 + 13.9648{ ¢ = 0.005 -0.0699 * 13.96641 L = 0.005
-0.0573 + 10.89781 ¢ = 0.005 -0.0548 + 10.92311 ¢ = 0.005
-0.0679 + 10.25741 ¢ = 0.005 -0.0517 + 10.30054 ¢ = 0.005
-0.0768 + 8.883121 ¢ = 0.009 -0.0451 + 8.929171 ¢ = 0.005
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Table XV
( CSDL 1 Overall Eigenvalue Analysis - 4 Controller
Modal Assignments
Controller 1: 2, 3, 8 Controller 3: 1, 4, 7
{ Controller 2: 5, 6 Controller 4: 9, 10, 11, 12

Overall System Eigenvalues
Before Transformation After Transformation
' Controller 1

[ -1.5834 + 5.793204 ¢ = 0.273 -1.4838 * 5.62°211 & = 0.264
-1.4901 + 5.557741 T ™ 0.268 -1.4925 * 5.34581 = 0.279
-1.1962 + 3.375961 z ™ 0.354 ~0.0120 * 3.85151 ¢ = 0.003
-1.1160 + 2.783594 T = 0.401 ~0.9282 * 2,790361 Z ™ 0.333
-0.3421 * 1.666204 ¢ = 0.205 ~0.3831 * 1.595111 = 0.240
-0.6071 + 1.379051 T = 0.440 ~0.4653 ¥ 1.424341 ;™ 0.327
: Controller 2
QL =1.6127 * 4.909651 T = 0.328 -1.6126 * 4.90965% Z = 0,328
, -1.6126 + 4.909641 z = 0.328 -1.6126 + 4.909601 ¢ = 0.328
-1.0361 ¥+ 5.150581 z = 0.201 -0.0192 + 3.848341 ¢ = 0,005
-1.0151 ¥ 4.244181 z = 0.239 -0.3599 + 3.607574 ¢ = 0.100
Controller 3
-1.6365 + 5.393571 ¢ = 0.303 -1.3751 + 5.458114 ¢ = 0.252
-1.7358 ¥ 5.164751 = 0.336 -1.5566 + 5.455551 ¢ = 0.281
-1.3556 + 3.644651 ¢ = 0.372 -0.2324 + 3.559321 ¢ = 0.065
-0.9042 ¥ 3.618434 ¢ = 0.250 -0.5452 + 3.558661 T = 0.153
-0.2572 ¥ 1.244191 ¢ = 0.207 -0.1766 + 1.169334 ¢ = 0.151
-0.4006 ¥ 1.126511 ¢ = 0.356 -0.2668 ¥ 1.166711 € = 0.229
: Controller 4
-0.5085 + 13.99421 T = 0.036 -0.3065 * 13.97161 T = 0.026
-0.2441 + 13.74051 ¢ = 0.018 -0.1137 * 13.94101 ¢ = 0.008
-1.2226 + 11.05411 ¢ =0.111 =0.9592 * 10.90181 ¢ = 0.088
-1.5415 + 10.36221 T = 0.149 =0.2197 * 10.87341 €= 0.020
-0.5054 + 10.10031 ¢ = 0.050 -0.0515 *+ 10.30351 ¢ = 0.005
-0.8318 + 9,520681 c = 0.087 -1.2352 * 10.23071 ¢ = o0.121
-1.6044 + 8.979221 z=0.179 -1.5900 + 9.158701 ¢ =0.174
-0.8934 + 8.084211 Z = 0.110 -1.0199 * 8.32872% ¢ =0.122

|
|
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effects of this cannot be determined until a time history of system
response can be generated. The other mode seriously affected was mode

5 again. This is an expected result, as mentioned earlier. However,
the overall results from this four controller run were surprisi&g, since
the requirement was specified in an earlier derivation that the number
of modes being suppressed could not exceed the number of sensors avail-
able. Decoupling controller 1 in this case involves suppressing nine
modes with a six sensor system. This is the reason for the total loss
in damping and probably accounts in large part for the overall decrease
in closed loop damping. 1In all other modal groupings, the four con-
troller system failed to stabilize the system and extremely large, posi-
tive eigenvalues were given in the overall system analysis. This parti-
cular run was successful only on a chance compatible grouping.

For the CSDL 2 model, the open loop damping ratio applied was
0.010, twice that for the CSDL 1 model. Since a multiple controller had
never been applied to this model prior to this study, an initial control
weighting matrix of Q = 20 [\ 1 ] was used for a first "feel" at
controlling the systea. The nodaI angles from Table XI give the follow-
ing grouping for a three controller system, controlling all twelve modes:

Group 1: 5, 6, 7, 21

Group 2: 4, 13, 17, 30

Group 3: 12, 22, 24, 28
(recalling that the mouss selected are not sequential). Mode 28 is
similar to mode 6 in the first model in the sense that it is mutually
orthcgonal to all except mode 4. Therefore, it is randomly placed with
the third grouping to bdalance the modal distribution. Control of all
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twelve modes is desired, therefore, there will be no residual modes in i

the study of the second model. As in the first model, we will try to

achieve a closed loop damping of ten percent on all modes. This is

a simple starting point for testing the application of a multiple con~-

troller to the given model and is in no way definitive as to controller
success or failure.

The eigenvalue analysis for the first run using the modal group-
ings above and Q = 20 [\ 1 J is given in Table XVI. Although no
inherent instabilities exist, it is evident there is an excessive

amount of dﬁping on the rigid body modes (over one hundred percent)

and no increase at all in the flexible modes. In some instances, there

is even a decrease in the damping during the transformation, but as

can be seen, no mode went below the initial open loop damping of one

The next step was to equalize the damping between the rigid and

flexible modes.

This was atempted by raising the control weighting

on the flexible modes and decreasing it on the rigid body modes. In

the untransformed closed loop system, there is a symmetry which exists

only as a result of the colocation of sensors and actuators. This

symmetry is apparent in the matrix Riccati solutions to Ai + nic i

in the state feedback matrices G, and Ki and in the

i

controller eigenvalues of Ai + nic 1 and Ai - lic 1 Bowever, when the

control weightings are varied as described, this symmetry is completely

lost in those controllers containing both rigid and flexible modas.

This loss of symmetry is not understood, since the weighting matrices

are identical for both control and observation calculations. It is
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Table XVI
CSDL 2 Overall Eigenvalue Analysis - 3 Controllers
q = 20

Modal Assignments

Controller 1: 5, 6, 7, 21 Controller 3: 12, 22, 24, 28
Controller 2: 4, 13, 17, 30 Residual: None

Overall System Eigenvalues

Before Transformation ' After Transformation

Controller 1

[ -.06463 + 6.107291 ¢ = 0.011 -.06305 + 6.107134 § = 0.010
-.06495 + 6.106961 = 0.011 -.06479 + 6.107114 = 0.011
-.04041 ¥ 0.717351 ¢ = 0.056 -.03367 + 0.716161 ; = 0.047
-.04187 + 0.715031 ¢ = 0.058 -.04115 + 0.716151 ;g = 0.057
-.24749 z 0.242111 ¢ = 1.022 -.25463 + 0.239891 ;= 1.061
-.26163 + 0.238291 ¢ = 1.098 -.24170 + 0.228841 . = 1.056
-.20131 + 0.199561 ¢ = 1.009 -.20632 + 0.198141 = 1.041
-.21119 E 0.196891 ¢ = 1.072 -.18949 + 0.183101 = 1.035

Controller 2
-.25049 # 25.04831 ¢ = 0.010 -.25049 + 25.04831 ¢ = 0.010
-.25049 + 25.04831 ¢ = 0.010 -.25049 + 25.04831 ;L = 0.010
-.05144 + 5.121384 ¢ = 0.010 ~.01543 + 5.121384 $ = 0.010
-.05144 + 5.121381 ¢ = 0.010 -.05144 + 5.121381 { = 0.010
-.08045 + 3.745184 ¢ = 0.021 -.07811 + 3.745021 ¢ = 0.021
-.08042 + 3.745181 ¢ = 0.021 -.08044 + 3.74516i1 ¢ = 0.021
-.29226 + 0.271474 ¢ = 1.077 -.28999 + 0.268191 g = 1.081
=-.29512 + 0.270791 § = 1.090 -.22818 + 0.217134 L =1.051

Cuntroller 3
-.21691 + 21.69031 ¢ = 0.010 =-.21691 + 21.69034 § = 0.010
-.21691 + 21.69031 [ = 0.010 -.21691 + 21.69031 { = 0.010
-.14844 + 11.14031 § = 0.013 -.12045 + 11.14034 ¢ =0.011
~.14763 + 11.13951 ¢ = 0.013 =-.14801 + 11.13991 = 0.013
-.07731 + 7.280261 ¢ = 0.011 -.07444 + 7.280231 { = 0.010
-.07710 + 7.280074 ¢ = 0.011 -.07717 + 7.280201 £ = 0.011
=-.04368 + 3.501924 ¢ = 0.012 -.03802 + 3.501734 ¢ =0.011
=.06277 # 3.501114 ¢ = 0.012 -.04313 + 3.501681 ¢ =0.012




believed to be a numerical incongruity in the matrix Riccati solution
subroutine, MRIC (Appendix D), but this is not confirmed.

To bypass this problem until its effects on the system performance
can be determined, the modal groupings were rearranged to combine the
rigid body modes into one controller. As a result, the groupings became:

Group 1: 4, 5, 6

Group 2: 7, 13, 17, 21, 30

Group 3: 12, 22, 24, 28
The control weightings could them be adjusted freely for the flexible
and rigid body modes because they are totally decoupled. The rigid
body mode control weighting was adjusted from 0.02 to 20 by orders of
magnitude and the flexible body mode control weighting was adjusted
from 20 to 15000 by approximate doubles of the previous value. A repre-
sentative eigenvalue analysis is presented in Table XVII. The values

of q, are presented such that

Q - .. (119)

There is an unstable mode present with this modal grouping and it
exists only within the overall system since the individual comtrollers
are stable. But the transformation succeeded in stabilizing the wode and
even increased the damping on the mode. Damping on two modes achieved
the ten percent desired (modes 7 and 13), not to mention the rigid body
modes, all of which are critically damped. Several other modes had signi-
ficant gains in their damping (modes 12, 21, 22 and 24). However, other

modes sacrified some of their damping during the transformation, therefore
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Table XVII

i CSDL 2 Overall Eigenvalue Analysis - 3 Controllers

Uigid = 20 9gexipie = 1000
Modal Assignments
Controller 1: 4, 5, 6 " Controller 3: 12, 22, 24, 28
Controller 2: 7, 13, 17, 21, 30 Residuals: None

Overall System Eigenvalues

Before Transformation After Transformation
Controller 1

-.16355 + 0.649154 z = 0,252 -.16093 + 0.156911 ;L = 1.026
-.58333 ¥ 0.579454 z = 1.007 -.14062 + 0.137921 g = 1.020
-.11817 E 0.244374 g = 0.484 =.11454 + 0.1130741 I =1.013
-.16155 + 0.156631 z = 1.031 -.10480 + 0.103671 Z=1.011
-.14044 + 0.137901 T =1.018 -.08908 + 0.088381 z = 1.008
-.11469 + 0.133241 z = 1,013 -.00248 + 0.002481 z = 1.000
Controller 2
=.25049 + 25.04831 z = 0,010 =.25050 + 25.04831 z = 0.010
=~.25049 + 25.04831 z = 0.010 =.25050 + 25.04831 z = 0.010
-.14827 + 6.128691 z = 0.024 ~.12806 + 6.106161 z = 0.021
-.18024 + 6.092721 = 0.030 -.14468 + 6.105811 ¢ = 0.024
-.06326 + 5.1226841 z = 0.012 -.06036 + 5.121281 § = 0.012
-.05924 + 5.118964 z = 0.012 -.06072 + 5.121261 ;= 0.012
-.60535 + 3.799604 z = 0.159 -.42295 + 3.725171 ¢ = 0.114
-.40053 + 3.570231 g =0,112 -.48612 + 3.718484 ¢ =0.131
-.60203 + 1.056931 ¢ = 0.570 -.23565 + 0.727251 ; = 0.324
+.47643 + 0.676371 = — -.02015 + 0.716121i = 0.028
Controller 3
-.21691 + 21.69031 z = 0.010 -.21691 + 21.69031 z = 0.010
-.21691 + 21.69031 z = 0.010 -.21691 + 21.69031 ¢ = 0.010
-.72335 + 11.13831 z = 0.065 ~.34237 + 11.13581 $ =0.031
-.67321 + 11.08391 Z = 0,061 -.69781 + 11.11941 = 0,063
~.21047 + 7.290881 z = 0,029 -.13175 + 7.279451 z =0.018
-.18001 + 7.258771 ¢ = 0,025 -.19501 + 7.278091 z = 0.027
~.21479 + 3.524611 z = 0.061 -.11033 + 3.500431 £ = 0.032
-.15069 + 3.445141 = 0.044 -.18141 + 3.497921 z = 0.052
i n




there is a trade-off for the added gain. Regardless of the weighting
factor applied, m;des 28 and 30 never achieved any gain in damping.

Table XVIII lists the eigenvalues of each controller for the runm.
The instability shown in the overall system eigenvalues, Table XVI1I, is
absent in the individual controller. This is a perfect example of
the point mentioned repeatedly in Chapter III1 that stable controllers
do not insure a stable system. Spillover terms do have a noticeable
effect. This situation might never have been seen in this study if the
wodal groupings had not been changed.

Other items of note from Table XVIII include the display of con-
troller symmetry mentioned earlier. In the untransformed system the
control and observation pcrtions of each controller yield identical
eigenvalues. The loss o7 this similarity led to postponing the use of
different control weightings for each mode. Also visible, in the trans-
formed system, is the loss of controllability in Controller 1 and the
loss of observability in Controller 3. This is characteristic of all
multiple controllers. If a lower block triangular transformation were
used, the loss of controllability would be in Controller 3 and the loss
of observability would be in Controller 1. This may be seen by the rela-
tionship of the two systems demonstrated earlier in Table XIII. In any
case, the firs: and last controller in any multiple controller will exper-
ience a loss of controllability or observability.

The final step was to apply the four controller system and, again,
attempt to achieve ten percent closed loop damping on all modes. It
vas deemed best to keep the rigid body modea in one controller and

distribute the remaining modes to the last three controllers. Since
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Table XVIII

CSDL 2 Contrnller Eigenvalue Analysis - 3 Controllers

qrigid =

Controller 1:
Controller 2:

Before Transformation

4, 5, 6
7, 13, 17, 21, 30

A+ BG1

~.16093 + 0.156911%
~-.14062 ¥ 0.137921
-.11454 ¥ 0.113074

A-KC1
~.16903 + 0.15691i

~.14062 ¥ 0.137921
~.11454 _I- 0.113071

A+ BG 2
-.25050 + 25.04834
-.16457 ¥ 6.105334
-.06103 ¥ 5.121261
-.50479 ¥ 3.716321
-.28750 ¥ 0.731874

A - XC 2

-.25050 + 25.0483
~.16457 ¥ 6,10533L
-.06103 ¥ 5.121264
-.50479 ¥ 3.71632%
-.29750 + 0.731871

A+ BG3

-.21691 + 21.69031
-.69781 ¥ 11.11941
-.19501 ¥ 7.278091
-.18141 ¥ 3.49791

A - KC 3

-.21691 + 21.6903
-.69781 ¥ 11.11941
-.19501 ¥ 7.278091
-.18141 ¥ 3.49791

2

Modal Assignments

Gflexible

= 1000

Controller 3:
Residual: None

Controller Eigenvalues

After Transformation

A+ BG1

-.10480 + 0.103671
-.08908 F 0.088381
-.00248 ¥ 0.002484

A-KC1
~.16093 + 0.156914

-.14062 ¥ 0.137921
-.11454 E 0.113074

A+ BG 2
-.25050 4+ 25.04831
-.12806 ¥ 6.106161
-.06072 ¥ 5.12126
-.48612 ¥ 3.718481
-.23565 ¥ 0.72725
A-KC2
-.25050 + 25.04831
-.14468 ¥ 6.10581
-.06036 ¥ 5.12128
-.42295 ¥ 3.72517%
-.02015 ¥ 0.71612
A + BG 3
-.21691 4+ 21.69031
~.69781 ¥ 11.1194l
-.19501 5 7.27809
-.18141 ¥ 3.49792
A~ KC3

-.21691 4+ 21.690%
-.34237 ¥ 11.1354
~.13175 4 7.27944
~.11033 + 3.500431

*
*

12, 22, 24, 28
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Table XIX

CSDL 2 Overall Eigenvalue Analysis - 4 Controllers

Uigig = 20 U)exible - 200
Modal Assignments
Controller 1: 4, 5, 6 Controller 3: 12, 22, 24, 28
Controller 2: 13, 17, 30 Con¢roller 4: 7, 21

Overall System Eigenvalues

Before Transformation After Transformation
Controller 1
-.4836 + 0.617861 g = 0,783 -.1609 + 0.15691i z = 1.025
=-.1619 + 0.45202i z = 0.358 -.1406 + 0.13792i z = 1.019
-.1183 + 0.177301 z = 0.667 -.1145 + 0.113074 = 1.013
-.1616 + 0.1566714 z = 1.031 -.1048 + 0.103674 g =1.011
-.1399 + 0.138151 ¢z = 1.013 -.0891 + 0.088381 Z = 1.008
-.1150 + 0.113534i z = 1.012 -.0025 + 0.0024741 z = 1.000
. Controller 2
-.2505 + 25,04831 ¢z = 0.010 -.2505 + 25.0483% z = 0.010
-.2505 + 25.0483i z = 0.010 -.2505 + 25.04821i z = 0.010
~-.0572 + 5.121951 r = 0.011 -.0560 + 5.121321 z = 0.011
-.0556 + 5.12042i gz = 0.011 -.0560 + 5.12132i z = 0.011
-.4162 + 3.777561 z = 0.110 -.3002 + 3.735474 = 0.080
-.2979 + 3.654454 z = 0.082 -.3443 + 3.732174 z =0.092
Controller 3
-.2169 + 21.69031 z = 0.010 -.2169 + 21.69031 z = 0.010
-.2169 + 21.69031 z = 0.010 -.2169 + 21.69034 = 0.010
-.5136 + 11.14091 ¢z = 0.046 -.3791 + 11.13461 T = 0.034
~-.4861 + 11.11221 z = 0.044 -.4795 + 11.1308i z = 0.043
-.1546 + 7.285341 z = 0.021 -.1345 + 7,279401 ¢ = 0.018
-.1399 + 7.270241i ¢z = 0.019 -.1366 + 7.279361 g = 0.019
-.1488 + 3.5141341 z = 0.042 -.1080 + 3.500491 z = 0.031
-.1134 + 3.4736941 z = 0.033 -.1107 + 3.500421i z = 0.032
Controller 4
-.1164 + 6.116561 z = 0.019 -.0745 + 6.10701i z =0.012
-.1317 + 6.099931 z = 0.022 -.1241 + 6.106241 ¢ = 0.020
-.4323 + 0.850261 z = 0.508 -.2064 + 0.724851 g = 0.285
-.3671 + 0.632771 ¢ = 0.580 -.0072 + 0.716041 z =0.010
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the three controller application had no residuals, a direct conversion
of the residuals to a fo;rth controller was not possible, therefore a
little modal rearrangement was in order. To maintain a similarity to
the previous tests, two modes were shifted from the second group to

form a fourth group. The final groupings were then given by

Group 1: 4, 5, 6

Group 2: 13, 17, 30

Group 3: 12, 22, 24, 28

Group 4: 7, 21
Using a control weighting of 2.0 for the rigid body modes and 500 for
the flexible body modes, the overall eigenvalue analys's for a four con-
troller system are given in Table XIX. As in the previous case, the
rigid body damping was increased for the rigid body modes. In the
flexible modes, no appreciable loss in damping occured, except in the
fourth controller where the expected loss in observability was found.
A blanket ten percent in damping was unachieveable by uniform increases
in the control weighting, again suggesting a reexamination of the modal
groupings. Also, modes 28 and 30 were unaffected by any value of 9

from 10 to 15000.
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VIII. Conclusions

This investigation demonstrated the feasibility of usin; multiple
controllers in maintaining system stability. It was shown that some
closed loop damping was sacrificed in transforming the system to a
block triangular form, however, the effects of that loss have not been
examined. Modal grouping played a very important part in the system
stability achieved and, in the four controller system, allowed an other-
wise uncontrollable configuration (CSDL 1) to be stabilized.

The use of angles between modal amplitude vectors is a convenient
method for initial grouping of modes, but the rank of the B and C
matrices should be examined closely. If they are not of full rank, the
modal groups may not be fully compatible as indicated by zero entries
in the non-zero singular values of the singular value decomposition.

Loss of controllability and observability in the first and last
controllers become more noticeable with the addition of more controllers.
This may be the result of the modal assignments used.

The inability to affect the last two modes of the CSDL 2 model
suggest that the sensor and actuator placement may not be suitable for
controlling those modes. This may be resolved by repositioning the
sensors available or adding sensors.

For those cases involving residuals, the residuals were not ser-
iously destabilized, although their general movement was to become
less stable. This movement to the right is contrary to what was

desired and needs more study.

Overall, the goal of effecting ten percent closed loop damping was

successful on the CSDL 1 model and unsuccessful on the CSDL 2 model,
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although significant increases were obtained on most modes. Total
controller decoupling was achieved while maintaining controller and
system stability for both models. The performance of the comtroller,
as well as could be determined without running a forty-four mode simu-

lation, was satisfactory, but did not meet all expectations.




IX. Recommendations

There are several directions that may be taken at thig point. The
intent of this study was to examine the application and performance of
three and four decentralized controllers on the CSDL 2 model, using the
CSDL 1 model as a check on the controller algorithm. A re-examination
of the modal assignments is in order to find grouping which are more
compatible. This compatibility way be determined by receiving non-
zero singular values for the singular value decomposition or simply
from the fullness of rank of the Bi matrices. Another direction that
may be taken is to consider adding a sensor specifically for modes 28
and 30 or redistributing the existing sensors to observe these two
modes more directly. These changes are suggested to improve the obser-
vability and controllability of the existing system.

A time history of the controller response would be invaluable at
this time, as this is the major performance criteria. This investigator
was unable to complete such a response. Additionally, the program used
may be examined for means to minimize core memory requirements. Fin-
ally, the controllers may be expanded to run a higher number of modes.
The first forty-four modes are usually used as a fair system representa-
tion. These suggestions expand upon the work done to date.

All of the above are either necessary or desirable. At a minimum,
these should be accomplished before the feasibility of implementing

this system can be fully evaluated.
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CSDL 1 NASTRAN Analysis




Frequencies and Mode Shapes

81

Nominal Case °
A, = 1.3706 X, = 2.1515 A, = 8.7889
w, = 1.1706 w, = 1.4668 wy = 2.9646
[-2.470E-01] ™ 3.998E-01] ™ 6.367E-02]
4.278E-02 2.309E-01 3.677E-02
1.451E-06 ~1.489E-01 4.000E-01
-1.962E-02 8.328E-02 1.983E-01
3.397E~02 4.808E-02 1.145E-01
6, = -7.213E-02 4, 4 6.812E-02 o5 =| 2.009E-01
-3.696E-02 6.999E-02 1.547E-01
4.347E-02 2.252E-02 6.803E-02
4.397E-02 -4.721E-02 9.782E-02
-1.962E-02 5.450E-02 1.362E-01
5. 296E~02 4.936E-02 1.000E-01
| 4.396E-02) | -4.721E-02 | 9.783E-02
- -
A, = 12.657 Ag = 16.810 Ag = 26.516
w, = 3.5578 wg = 3.8484 wg = 5.1494
[2.745E-02 ] [ -8.783E-02] [ 1.353E-05]
4. 757E~02 -5.070E-02 1.218E-11
2. 249E-05 -1.298E-01 | 3.401E-11
-1.718E-01 3.095E-01 -2.041E-01
2.977E~01 1.786E-01 3.535E-01
¢, |-6.816E-05 ¢5 =| ~3.514E-01 8 =|-6.057E-06
-2.512E-01 2.865E-01 -2.041E-01
3.435E~01 1.224E-01 -3.535E-01
-8.190E-02 1.139E-02 1.086E-04
-1.718E-01 2.493E-01 4.082E-01
3.894E-01 1.868E-01 6.802E- 10
| 8.192E-02 ] | 1.140E-02 | 5.065E-10]
A, = 32.216 Ag = 32.613 Ag = 79.917
wy = 5.6759 wg = 5.7108 wg = 8.9396
~2.661E-02 -2.993E-02] [ 9.906E-02 ]
4 .606E-02 -1.730E-02 5.720E~02
3.302E-05 8. 784E~02 1.728E-01
3.374E-02 4.070E-02 1.075E-01
-5.844E-02 2.359E-02 6.213E-02
=| 3.231E-05 =| 3.553e-02 =} -4.953E-01
2.733E~02 2.742E-02 ~1.678E-01
-5.481E~02 2.797E-02 ~2.193£-01
-4.912E~01 -4.874E-01] . ~1.1108-02
3.381E~02 3.799E-02" ~2.743E-01
-5.108E-02 9.808E~03 ~3.5538-02
| 4.908E-01 |-4.878E-01 |-1.1088-02 ]




‘0

i “10

Mode

106.164
10.3036

-3. 389:-05]
5.849E-03
-1.605E-05
-2,286E-01
3.959E-01
4.963E-05
3.783E-01
4.554E-02
-1.470E-02
-2.286E-01
-3.048E-01

| 1.471E-02]

~N 00 B W

L™~ - ]

10
11

0.2490
0.3510
0.2890

0.0490

-.0690
0.2310
0.3170
0.2200

0.1140

A

“n

9'D Matrix (12 x 6)

1m-

119.320
10.9234

6.369E-02 ]
| 3.677E-02
9.588E-02
-2.400E-01
-1.385E~01
-2.604E~01
-8.605E-02
3.944E-01
6.969E-03
2.984E-01
-2.719E-01

| 6.970E-03

A2

12

Actuator (Sensor)

2 k]
-.0440 -.0670
-.0690 -.0170
-.0460 ~-.2710
-.2490 -.0600
0.3510 -.0490
-.2890 0.2890
-.0490 -.3690
-.0690 0.2990
0.2310 0.2500
-.3170 -.1500
0.2200 -.1460
0.1140 -.0132

4
-.0230

0.1120
0.0770
0.1890
0.1560
-.2890
-.3200
0.3650

~.2290
0.1670

0.1450

0.0248

0.0770
-.1890
0.1560
0.2890
0.3200
0.3650

-.2290
-.1670

0.1450
0.0248

5
0.0230

0.1120

| -1.304E~01

195.068
13.9667

3.205E-02]
1.851E-02
6.438E~02
-4.025B~01
-2.324E-01

3.203E-01
-1.587E~01
-9.277E-03
2.271E~02
3.568E-01

| -9.281E-03]

6
0.0670

-.0170
-.2710
0.0600
-.0490
-.2890
0.3690
0.2990

0.2500
0.1500

--1660
-.0132
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oD Matrix (12 x 21)

Actuator (Sensor)

Mode 1 2 3 4 5 6

4 .004775 .004876 -.04429 0.0 -004775  .004876

5 .000001 .003619 .003618 -.004642 .000001 -.003618

6 -.006023 .000267 .000266 -.008232 .006023 -.000266

7 .000026 -.001570 -.001533 -.002816 -.000026 .001569

, 12 -.000452 ~-.000859 -.000903 .010104 .0C0432  .000869
i 13 -.016036 -.002018 .006244 .000073 -.016045 ~.002002
f 17 .000811 -.000616 -.000255 .000002 .000812 .000619
i 21 -.001659 -.001165 .000520 -.001659 .001649 .001152
; 22 .000981 -.002849 -.000347 -.001226 .000980 .002859
24 .019403  .005697 .005622 -.017699 .019407 .005625

28 0.0 -.ooooda .000001 -.000003 -.000003 -.000005

30 -.000003  .00010 .000015 -.000005 -.000009 .000008

7 8 9 10 11 12

4 .004429 0.0 -.013837 .003015 .002568 -.013837

5 -,003619 .013451 -.000002 .003619 ,003618 .000002

6 -.000266 -.003888 -.006023 .000266 .000266 006023

7 .001532  -.006275 -.000098 -.001565 -.001541 -.000096

12 .000927 -.C.,1977 -.C00531 -.000880 -.000909 .000536

13 .006278 -.000012 .000644 -.000401 .004628 .000688
17 -.000257 0.0 .000085 -.000550 .000331 -.000Q86

21 -.000527 .001115 -.001645 -.000847 -.000291 ~-.006164
22 .003478  ,000638 -.000292 -.002955 -.003584 .000293

24 -.00568 .001840 .00295. -.003584 .004155 -.002891
(" 28 .01 0.0 -.000008  .000001 -.000004  -.000008

0 .000016 0.0 -.000004 .000018 .000(16 -.000004




Mode

12
13
17
21
22
24
28

30

12
13
17
21
22
24

28

13

.003015
-.003618
-.000266

.001563
-.000891
-.000382
-.000552

.000840

.002965

.003542
0.0

.000016

19

-.009082
.003617
.000266

-.001520

-.000940
.010503

~.000073
.001328

-.003782
.011238

-. 000009

.000011

Actuator (Sensor)

14
~.002568
~.003619
~.000266

.001540
.000928
.004658
-.000333
-.000291
.003389
-.004167
~.000003

.000016

20

=~ .013837

-.00002

.006023

.000088

.000577

.000686

.000086
.001622

.000206
.002757

. 000009

-.000004

15
.009529
.003620
.000266
-.001585
-.000822
-.006268
-.000810
-.002043
-.002561
-.011645

.000004

.000023

21

-.009082
-.003620
-.000266
.001519
.000970
.010546

-.000075
-.001337

.003795

-.011342

. 00000
.000014

85

16
.009259
.003617
.000266
.001583
.000824
.006263
.000812
.002030
.002570
.011593
.000003

.000018

17

0.0

.013452

.015687

-.006567

-.000105

.000033

0.0

-.004348

.001357

-.008292

0.0

0.0

i

18
.013837
.000002
.006023
.000089
.000570
.000658
.000085
.001618
.000201
.002726
.000009

.000005
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AD-A124 702

UNCLASSIFIED

DECENTRALIZED CONTROL OF A LARGE SPACE STRUCTURE AS
APPLIED TO THE CSDL’ 2 MODEL(U} AIR FORCE INST OF TECH
WRIGHT-PATTERSON AFB OH SCHOOL OF ENGI.. E S ALDRIDGE
DEC 82 AFIT/GA/AA/820-1 F/G 22/2




}

—

R
Lo £ =
| £ 2

o

= TERTR

MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU OF STANDARDS-1963-A




c
c
o

PROGRAM ACOSS2(INPUTOUTPUTTAPEB+TAPES)

THIS PROGRAM GENERATES AN UPPER TRIANGULAR TRANSFORMATION

REAL
REAL
REAL
REAL
REAL
R EAL
REAL
REAL
RFAL
REAL
REAL
REAL
REAL
REAL
REAL
REAL
REAL
REAL
REAL
REAL
REAL
REAL
REAL

Al€(21+421)4A2021+21)9A3(21+21)9A4(21421)
B1€21,21)482(21+21)4B3(21921)4B4(21,21)
C1(21+21)9C2(21+21)+C3€21+21)+4CA(21421)
CTCC1021+21)9eCTCC2(21921)+CTCCI(21921)4CTCCAC21421)
SAT(21921)+SAT2(21 +21)9SATI(21+921395AT4(21,421)
AKC(21921)9ACT(21021)9BCG(21+21)KCC(21421)
P(21+21)4+5€(21,21)

QA1 (21921)9QA2€214+21)¢QA3(21+21)90QA8(21,421)
G0B1(21421),0Q0B2(21+21)7+Q08B3(21421)9Q088(21,21)
ACG1(21+21)4ACG2(21+21)4AC63(21421)+ACGA(21421)
ABGL (21421)9ABG6G2(21+21)+ABG3(21+921)9ABGA(21421)
GAIN1(21421)+6AIN2(21+21)96AIN3(21421)46ATNA(21,21)
KT1021921)9KT2(21921)9KT3€21¢21)¢KT4(21,421)
KOB1 €(21921)eK0B2(21+21)+K0B3(21421)0K0B4(21+21)
GANMAS(21921)9GAMMA2(2]1921)+GAMMA3(21,421)
T2(21921029T73(21021)9T1(2121)

TRTC21 921 )9sTENC(21921)oCT(21421)9V(21421)
RK(21921)9RK4(21921)9RK2(21021)4RK3I(21,21)
RG2(21421) 9)RG3I (21021 ) 9RG1(21,421)

MAJUM (S58958)9D(17)eX0(58)eW(17)oTOL DT
ZETA9AACL17)4BB(1T)9SINGC(21) 9XTR(21421)9X1(S8)
EAT(SB8 9583 +EAT2(58¢958) 9 WORK(58+58)9STOR(21421)
PHIA(21421)3PHIS(21421),MODE(2921)¢INIT(4,521)

INTEGER N oN2yNC1oNC2yNC3I9eNC129NC22oNC32+4NR9yNR2
INTEGER IC1C17)4IC2CLT) 9yIC3C1739ladoKoLoMoKKoLLIMM
INTEGER DECosQeNACT o NSENIRC(1IT)yIERySKIPINCOLINCOL1
INTEGER NDAYNDIMINDAL +NDIML9ZZ9E29E39E49P19P2,P3
COMPLEX Z2(58),W1(12)

COMMON/MAINA/NDA ¢NDA1 ¢ WORK

COMMON/MAINB/NCOL o NCOLL

COMMON/MATINL/NOIMosNDIML oTENgX(33564)
COMMON/MAIN2/STOR

COMMON/MAIN3I/XTR

COMMON/SAVE/T(100),TS(100)

COMMON/ INQUT/KOUT,» TAPE

COMMON/NUM/ICL1 oIC29IC39IRsNCLoNC2oNCIoNR

INITIALIZATIONS

NOIM

NDIML

NCOL

NCOL1
NDA =

NDA1
KouT
TAPE
Q=

= 12
=13
= 21
s 22
58
S9
6
9

e VAR o TR L T T, il YA TR YR RE R T




IER = 0
22 = 0

PRINT®C(// /7))

PRINT»,? (A2 2 A2 R R Y N R N R Y R R Y R X R R R R 22 X222 XL
PRINT»y® sanew Y2 %2
PRINT=,? LA AL R 3 3UPPER-2ESIDUAL teane
PRINTa2,® T2 X: XY 1
PRINT e, [ 22X BLCCK T XY
PRINTa,y® AEES R ' 2 X2 13
PRINT ay? SeaeR cC¢sDL Iz 'Y2XL)
PRINT 24" T X 'Y2XTS
PRINT 2, [ 22X R R Y R R R N Y N R R PR P R R R R S R YN SRR Y]
PRINT®*(/7)°

i PRINT»4* THIS PROGRAM GENERATES A SOLUTIONS®,

% . * USING AN UPPER TRIANGULAR TRANSFORMATION ¢
PRINTC//7 /7))

INITIAL SELECTION FOR THREE OR FOUR CONTROLLERS

QOOMOO0M00

PRINT#*9* FOR A THREE CONTROLLER RUNy ENTER 3¢ ORy *
PRINT#9®* FOR A FOUR CONTROLLER RUNs ENTER ¢ >¢
READ(Be*) DEC

! C DEC DEFAULT SWITCH
IF (DEC.NEe4) DEC = 3

PRINTsy® ¢
PRINTwy* THIS IS A *+DECe* CONTROLLER RUN *

PHI MATRICES AND CONTROLLER ENTRIES

aO0O0MNO0N

. PRINTYC//7)?
2 IF (DECJEQe3) THEN

' PRINT#*¢® ENTER NC1yNC29yNC3sNRyNACT yNSEN9ZETA D¢
ELSE
PRINT#9® ENTER NC1sNC29NC39NCA¢NACT yNSEN9ZETA >°?
: ENDIF
ot READ(S9*) NC1yNC29NC3yNRyNACToNSENCZETA
PRINT*¢NC19NRC2oNCIoNR¢NACT¢NSEN2ETA

. PRINTeg® ¢
; ; ' PRINT»9® ENTER THE "¢NACT+® ELEMENTS FOR EACH PMIA ¢
o PRINTeov ¢ :
' N = NC1 ¢ NC2 ¢ NC3 + NR
' DO 1 1=1yN

; PRINT2o?ENTER PHIA 514" D
% READ(B89e) (PHIAC(I»Jd)eJ=14NACT)
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PRINT »,°® Vo (PHIAC(I9J)eJ=14NACT)
; 1 CONTINUE

PRINTEO(/7 )

PRINT+,* ENTER THE "yNSENes® ELEMENTS FOR EACH PHIS *

PRINT 2, ¢

DO 2 I=1yN

PRINT# o "ENTER PHIS *9l4" >*

READ{D¢?) (PHISU(I +J)sJ=19NSEN)

PRINT,"* P o(PHIS(I9J) 9J=1¢NSEN)

2 CONTINUE
PRINT(//)"*

c

C

C OMEGAS

c

c
PRINT»y ¢ ENTER THE VALUE FOR EACH OMEGA *
PRINT2," *
00 3 I=1yN
PRINT2o *ENTER OMEGA "I " DY
READ(8y*) NC(D)
PRINT 2, ? TellI)
D(I) = =2, * ZETA « W(I)

3 CONTINUE

c

c

c

20 CONTINUE

c

c

C SECONDARY SELECTION FOR THREE OR FOUR CONTROLLERS,y TO

C BE USED FOR RUNS AFTER THE FIRST Jo08

c

c
IF (Q.EQe2) THEN
PRINT#¢?® FOR A THREE CONTROLLER RUNs ENTER 3¢ ORy *
PRINT#«g® FOR A FOUR CONTROLLER RUNs ENTER & >0
READ(8y+) DEC

c
€ OEC DEFAULT SMITCH
c
IF (DECONEe®) DEC = 3
PRINTse? ¢
PRINTey® THIS IS A *4DECye®* CONTROLLER RUN *
PRINTYC// )
c
c
IF COEC.EQ.3) THEN
PRINTe9? ENTER THE VALUES OF NC1eNC2ysNC3y9NR D¢
ELSE
PRINTas? ENTER THE VALUES OF NC14NC2oNC3eNC& D>°
. ENDIF
( ¢ READ(8,+) NC1yNC24NC3oNR

PRINT*¢NC19NC29yNC3I¢NR
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(

o000

100

PRINT®(//)"
ENDIF

PRINT=¢® THE FOLLOMING MODES ARE ENTERED ACCORDING TO THE ©
PRINT*y* ORDER IN WHICH THEY ARE ENTERED IN THE DATA FILE ¢
PRINT*4® AND NOT ACCOROING TO THEIR ACTUAL MGDE NUMBER. *
PRINT®(//)"

PRINT»4® ENTER THE f9NCle? CONTROLLER 1 MODES >?
READ(8+*) (IC1(I)sI=1«NCl)

PRINT *,* *9CICl(I)9I=19NC1l)

PRINTa,® ¢ :

PRINT»y" ENTER THE *9yNC29* CONTROLLER 2 MOQDES >°*
READ(84*) (IC2(I)sI=14NC2)

PRINTe,® ®4(IC2¢T)sI=19NC2)

PRINT »p® ¢

PRINTe4® ENTER THE ®¢NC39* CONTROLLER 3 MODES >°¢
READ(B9*) (IC3S(INeI=19NCI)

PRINT «,* 945C(IC3ICTI)9I=1oNC3)

PRINT ey0 ¢

IF (DEC<EQe3) THEN

PRINT»y® ENTER THE *9oNR+? RESIDUAL NDOES >°

ELSE

PRINT+,® ENTER THE ®9NRo' CONTROLLER & MODES >°*

ENDIF

READ(Be») (IR(I)eI=19NR)

PRINT«,?® ? (IR(INyI=1¢NR?

PRINT ag® ¢

NC12
NC22
NC32
N2 = N

NR2 = 2 « NR

IF (DEC.EQ.3) THEN

M= 2 =« NC12 + 2 » NC22 ¢ 2 » NC32 +» NR2

ELSE

M =2 « NC12 + 2 » NC22 ¢ 2 » NC32 ¢ 2 » NR2

ENDIF

CONTINVE

PRINT»9® TO PRINT ALL OF THE MATRICES ENTER 19 ELSE ENTER 0 >°*
READ(8+*) @

PRINT (/7 /)*

NC1
NC2
NC3

*tRONN
* ¢ %

NH oW

READ IN THE MWEIGHTING MATRIX
DIAGONAL VALUE FOR EACH MODE

PRINT#*¢® ENTER THE DIAGONAL VALUESe IN MODE INPUT °®
PRINT*9® OQORDERy FOR THE CONTROL WEIGHTING MATRIX >°
READ(8y*) C(AALIDoI=1eN)

PRINT oo ¢




» |
PRINT*o(AAC(I)eI=1yN)
PRINT (/7 )
c
PRINT=o® ENTER THE DIAGONAL VALUESs IN MODE INPUT ®
+ PRINT=2y? ORDERy FOR THE OBSERVER WEIGHTING MATRIX >*
READ(8s+) (BB(I)eI=14N)
PRINT 2,0 ¢
PRINT»9(BB(I)sI=14N)
PRINT®(/7 /)
Cc .
C
C FORMING THE A¢ByC AND MEIGHTING MATRICES
C
C
CALL FORMAC(Al,DsWsNC1oNC12,41C1)
CALL FORMB(B1 PHIA9NC1 +NC124NACTIC1)
CALL FORMC(C1 ¢+PHISyNCLWNC124NSENSIC1)
CALL FORMACA249DeWINC294NC2291C2)
CALL FORMBU(B2 +PHIAWNC24NC22yNACT1C2)
CALL FORMC(C2¢PHIS ¢sNC2eNC229NSENVIC2)
CALL FORMA(CA3 yDeMN¢NCIINC3I24IC3)
CALL FORMB(B3IsPHIAJNC3I9gNC3I29NACTHIC3)
CALL FORMC(C34sPHIS NCIyNC324NSENLIC3)
CALL FORMACA43DsWoNRasNR24IR)
CALL FORMB(BA.PHTIAsNRsNR2+NACT,IR)
CALL FORMC(CA4PHIS +sNRoNRZ yNSEN9IR)
CALL FORMQ(QAl yAA+NCl.IC1)
CALL FORMQ(QO0B1,48BB8¢NC1,IC1)
CALL FORMGBIQA2¢AANC2+IC2)
CALL FORMQ(QOB2+BBsNC2,1C2)
CALL FORMQUQAISAAINC3HIC3I)
CALL FORMQ(QOB3¢BBeNC3IHIC3)
IF (DEC.EGQGed4) THEN
CALL FORMQ(QA49AASNR9IR)
CALL FORNQ(QOBA+B8ByNRIR)
ENDIF
c
c
C PRINTING THE Ae¢BeC AND WEIGHTING MATYRICES
c
c

IF (Q.EQ.1) THEN

PRINT#+y* THE CONTROLLER 1 A MATRIX IS °

CALL PRNT (Al9NC129NC12)

PRINTey* THE CONTROLLER 1 B MATRIX IS *

CALL PRNT (B1,NC12,NACT)

PRINT#9? THE: CONTROLLER 1 C MATRIX IS °*

CALL PRNT (C1NSENyNC12)

PRINT+9® THE C1 CONTROL WEIGHTING MATRIX IS °*
CALL PRNT (QA14NC129NC12)

PRINT#*¢® THE C1 OBSERVER WEIGHTING MATRIX IS ¢
CALL PRNT (QOBlsNC129NC12)

PRINT «9® THE CONTROLLER 2 A MATRIX IS *

CALL PRNT (A29NC224NC22)
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PRINT»¢® THE CONTROLLER 2 B MATRIX IS ¢

CALL PRNT(B2sNC22yNACT)

PRINT«4s® THE CONTROLLER 2 C MATRIX IS ¢

CALL PRNT (C2,NSENyNC22)

PRINT*9" THE C2 CONTROL MEIGHTING MATRIX IS ¢

CALL PRNI (QA2+NC22.NC22)

PRINT=y® THE C2 OBSERVER WEIGHTING MATRIX IS *
CALL PRNT (Q0B2eNC22,NC22)

PRINT*9® THE CONTROLLER 3 A MATRIX IS ¢

CALL PRNT (A39NC329NC32)

PRINT»4¢ THE CONTROLLER 3 B MATRIX IS ?

CALL PRNT (B3+NC3294NACT)

PRINT#9® THE CONTROLLER 3 C MATRIX IS ¢

CALL PRNT (C3+NSENyNC32)

PRINT#¢® THE C3 CONTROL MEIGHTING MATRIX IS *

CALL PRNT (QA3sNC329NC32)

PRINT»o® THE C3 OBSERVER WEIGHTING MATRIX IS ¢
CALL PRNT (QOB3¢NC324NC32)

IF (DEC.EQe3) THEN

IF (NR.EQ.0) THEN

PRINT#*»® NO RESIDUAL TERMS °*
6070 115

ENDIF

PRINT«o® THE A RESIDUAL MATRIX [S ¢

CALL PRNT (A44NR24NR2)

PRINT+*s* THE B RESIDUAL MATRIX [S

CALL PRNT (B4yNR2yNACT)

PRINTey® THE C RESIDUAL MATRIX IS °*

CALL PRNT (C4osNSEN¢NR2)

ELSE

PRINT*s* THE CONTROLLER 4 A MATRIX IS ¢

CALL PRNT (A4,NR2,NR2)

PRINT#9* THE CONTROLLER A B MATRIX IS *

CALL PRNT (BAyNR24NACT)

PRINT#¢* THE CONTROLLER # C MATRIX IS °?

CALL PRNT (CA4oNSENNR2) .
‘ PRINT«¢® THE CA CONTROL WEIGHTING MATRIX IS ¢
CALL PRNT (QA4 9 NR2 yNR2)
PRINT«y* THE CA OBSERVER WEIGHTING MATRIX IS ¢
CALL PRNT (QOBA¢NR2sNR2)
ENDIF

ENDIF
113 CONTINUE

THIS SECTION GENERATES THE RICCATI SOLUTIONS
AND THE GAIN RMATRICES OF EACH CONTROLLER

OO0 O O
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120

IF (ZZ.EQ+0) THEN

CALL VMULFP(BI081oNClZoNACToNC12oNCDL!NCOLQSAT'NCOL-IER)
ENDIF

CALL VHULFH(CIQCIoNSENvNCl2:”C12’NCOL’NCOL'CTCCIsNCOL'IER)
CONTINUE

IER = 0

TOL = 0.001

PRINT»4* THE FOLLOWING ARE THE MRIC A+BG 1 INPUTS *
PRINT®*(//)"

PRINT»4®* MATRIX Al IS *

CALL PRNT (A14NC12NC12)

PRINT+#¢* MATRIX SAT (Bl»B17) IS °

CALL PRNT (SATNC12,NC12)

PRINT»*¢® NATRIX QA1 IS °

CALL PRNT {8A1 ¢4NC12,NC12)

PRINT#*9" NC12 = *4NC12

PRINT®* (/7))

CALL MRIC (NC124A19SAT¢GAl19S9ABGLlsTOLIER)

IF (2Z2.EQ.0) THEN

PRINT*¢* THE RICCAT] SOLUTION OF AC +» BCG #1 IS ¢
PRINT*9"% ITER = %,1ER

CALL FPRNT (SyNC12sNC12)

ENDIF

CALL VMULFM(B1yS¢NC12sNACTsNC12,NCOLINCOL9GAIN1 yNCOLIER)
IF (ZZ.EQ+1} THEN

CALL VMULFM(T196AIN1sNACY»E44NC12,NCOLINCOLySTORINCOL yIER)
CALL MMUL (RG1 ySTOREA+Ea¢NC12,,TEN)

CALL MMUL (T1+TENWNACT »E49NC124GAINL)

PRINT+4* THE 61« 6AIN MATRIX IS °

ELSE

PRINT*4® THE 61 GAIN MATRIX IS °
ENDIF

CALL PRNT (GAIN1+NACTNC12)

IER = O

TOL = 0.001

CALL TFRCOACT»A1eNC129NC124152)

PRINT*4% THE FOLLOWING ARE THE MRIC A-XKC 1 INPUTS *
PRINT(//)*

PRINT»4* THE MATRIX A1 TRANSPOSE IS *

CALL PRNT (ACT sNC124NC12)

PRINT#*»% THE MATRIX CTCC1l (CAT=*Cl) IS ¢

CALL PRNT (CTCCL1sNC129NC12)

PRINTY+~,* THE MATRIX QOB1 1S *

CALL PRNT (Q0B1oNC12¢NC12)

PRINT #¢® NC12 = *yNC12

PRINTY (/7))

CALL MRICINC120ACT oCTCC12Q0BL¢PoACGLleTOLLIER)

IF (22.EQ.0) THEN

PRINT#*o®* THE RICCATI SOLUTION OF AC - KCC #1 IS *
CALL PRNT (PoeNC129NC12)

ENDIF

CALL MMUL (C1 9P oNSENsNC129NC12,KT1)

PRINT*9®* THE K1 GAIN MATRIX IS °

CALL TFROKOB1 oXT1oNSEN9NC129152)
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CALL PRNT (KOS1yNC12¢NSEN)

CONTINUE

IF (2Z.EQ.D0) THEN

CALL VMULFP(B29B2yNC22¢NACToNC229NCOLWNCOL 9SAT24yNCOLYIER)
CALL VMULFM(C29C2¢NSENyNC229yNC22¢NCOL yNCOL9CTCCZ2oNCOL sIER)
ENDIF

CONTINUE

IER = 0

TOL = (.001

PRINT+y? THE FOLLOWING ARE THE MRIC A+BG 2 INPUTS ¢
PRINY*(// )"

PRINT«y? THE MATRIX A2 IS ¢

CALL PRNT (A29NC229NC22)

PRINT*y* THE MATRIX SAT2 (B2+B27) Is ¢

CALL PRNT (SAT29NC22yNC22)

PRINT=4® THE MATRIX QA2 IS ¢

CALL PRNT (QA2 +NC224NC22)

PRINT«y® NC22 = ®4NC22

PRINTC// )"

CALL MRIC (NC22+A2+SAT2+QA29SeABG2+TOL +IER)

IF (22.EQ.0) THEN

PRINT+y®* THE RICCATI SOLUTION OF AC + BCG #2 IS ¢
PRINT=4* IER = *,IER

CALL PRNT (S9NC229NC22)

ENDIF

CALL VMULFM(B2+SyNC22¢NACTINC22¢NCDOLoNCOLeGAIN2¢NCOL9IER)
IF (ZZ.EQ.1) THEN

CALL VMULFMC(T296AIN2yNACToEIsNC229NCOLINCOL9sSTORINCOL o [ER)
CALL MMUL CRG2+STORYEZIEIyNC22,TEN)

CALL MMUL (T2+TENoNACT +E39NC22,GAIN2)

PRINT*y* THE 62¢ GAIN MATRIX IS ¢

ELSE

PRINT#*s® THE 62 GAIN MATRIX IS *
ENDIF

CALL PRNT (GAIN24NACTyNC22)

IER = O

TOL = 0.001

CALL TFRCACT9A29NC224NC22+1,+2)
PRINT»¢?* THE FOLLOWING ARE THE MRIC A-KC 2 INPUTS °?
PRINT*(/7)°* :
PRINT+*4" THE MATRIX A2 TRANSPOSE IS *
CALL PRNT (ACT ¢NC22,NC22)
PRINT»¢® THE MATRIX CTCC2 (C2TeC2) IS ¢
CALL PRNT (CTCC2NC224NC22)
PRINT+*¢* THE MATRIX QOB2 IS °*
CALL PRNT CQOB2+NC22yNC22)
PRINT#y® NC22 = ?,NC22
PRINT*(//7)"
CALL MRIC (NC22+ACT+CTCC24Q0B2+sPyACE2+TOL1IER)
IF (22.EQ.0) THEN
PRINT#¢% THE RICCATI SOLUTION OF AC - KCC #2 IS °*
CALL PRNT (PoNC22yNC22)
ENDIF
CALL MMUL CC29PoNSENINC229NC224KT2)
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IF (27.EQe1) THEN

CALL VMULFP(RK29GAMMA29P39P3 ¢NSENINCOLINCOL9STOR9NCCLsIER)
CALL MMUL (STORJKT24P3+NSEN¢NC22,4KCC)

CALL MMUL (GAMMA2¢KCCyNSENPIINC224KT2)

PRINT*y* THE K2+« GAIN MATRIX IS ¢ °

ELSE

PRINT«9® THE K2 GAIN MATRIX IS °

ENDIF

CALL TFRUKOB2+KT2¢NSENINC2291,2)

CALL PRNT (KOB2yNC22yNSEN)

CONTINUE

IF (2Z.EQ.0.0R.DEC.EQ.3) THEN

CALL VMULFP(B3+B3)NC3I2eNACToNCI29/NCOL9NCOLSATIWNCOLIER)
ENDIF

IF (22.€Q.0) THEN

CALL VMULFM(C34C3 ¢yNSENJNC3I29NC3IZ ¢ NCOLsNCOL9sCTCC3IoeNCOL ¢IER)
ENDIF

CONTINVE
IER = 0
TOL = 0.001

PRINT2y® THE FOLLOMING ARE THE MRIC A+BG 3 INPUTS ¢
PRINT®*(//)°*

PRINT*»y? THE MATRIX A3 IS * -

CALL PRNT (A3¢NC32+NC32)

PRINT»e? THE MATRIX SAT3 (B3+B3T) IS5 *

CALL FRNT (SAT24NC32,NC32)

PRINT«9* THE MATRIX QA3 IS *

CALL PRNT (QA3¢+NC3I24NC32)

PRINT#9® NC32 = "yNC32

PRINT®(//)"

CALL MRICC(NC3I2yA33SATI QA3 4SyABG3I»TOLVIER)

IF (Z2.EQ0.0) THEN

PRINT»¢? THE RICCATI SOLUTION OF AC + BCS #3 IS
PRINT#»¢* IER = %, IER

CALL PRNT (S¢yNC329NC32)

ENDIF

CALL VMULFM(B3ySeNC3I29NACTyNCI2yNCOLoNCOLsGAIN3IyNCOLIER)
IF (2Z2EQ01.AND.DEC.EG.4) THEN

CALL VMULFM(T3yGAIN3IINACTHE2/NC32¢NCOLINCOL9STORINCOLsTIER)
CALL MMUL (RG3I+STORIE2+E24NC3I2,4TEN)

CALL MMUL (T3, TENsNACT yE2sNC3I2+6AT1" 3)

PRINT»¢® THE 63+ GAIN MATRIX IS °

ELSE

PRINT2¢® THE G3 GAIN MATRIX IS *

ENDIF

CALL PRNT (GAIN3¢NACTHINC32)

IER = 0 '
TOL = 0.001

CALL TFRCACT9A3¢NC329NC32,41492)
PRINTe9? THE FOLLOWING ARE THE MRIC A-KC 3 INPUTS ¢
PRINT®¢// )

PRINTeg® THE MATRIX A3 TRANSPOSE IS °*
CALL PRNT (ACToNC3I2.NC32) ‘

PRINT#9® THE MATRIX CTCC3 (C3T=C3) IS *
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CALL PRNT (CTCC3,NC324NC32)

PRINT#*o® THE MATRIX GOB3 IS *

CALL FRNT (QOB3I¢yNC3I24NC32)

PRINT*9® NC32 = ®4NC32

PRINT®(//)"*

CALL MRICCNC3I2¢ACT+CTCC39QO0BIyPoACGIoTOLWIER)

IF (ZZ.EQ.0) THEN

PRINT2y® THE RICCATI SOLUTION OF AC - KCC #3 IS ¢

CALL PRNT (P¢NC329NC32)

ENDIF

CALL MMUL (C3¢P oNSEN9NC3I29NC329KT3)

IF (2Z.€Q.1) THEN

CALL VMULFP(RK3I9GAMMAI9P24P2eNSENSNCIL9NCOL 9STCRyLCCL4IER)
CALL MMUL (STOR oKT29P2, ISEN9NC3I2,4KCE)

CALL MMUL (GAMNAJ o KCCo NSENIP2eNCI2Z2 KT )

PRINT#*9® THE K3+ GAIN MATRIX IS ©

ELSE

PRINT29® THE K3 GAIN MATRIX IS ¢

ENDIF

CALL TFRUKOB3I¢KT3oNSENINCI29142)

CALL FRAT (KOR3gNC32¢SEN)

CCNTINUE

IF (DEC.CQe4) THEN

CALL VMULFP(BA9BasNR29NACTeNRZ2NCOL sNCIL9SATAGNCCL oIE7)
IF (2Z2.EQ.0) THENM

CALL VMULFM{CA¢CA gNSENINR2¢MNR24NCOL ¢NCOL #CTCCASNCOLHIER)
ENDIF

CONTINUE
IER = 0
TOL = C.0 72

CALL MRICC(HR29A49SATGeQA%9SeABGASTOLHIE?)

IF (ZZ2.EQ0.0) THEN

PRINTe¢y® THE RICCATI SOLUTION OF AC + BCG 8¢ IS ¢
PRINT 29 ® [ER = "y IER

CALL PRNT (SehR2HF2)

E.DIF

CALL VMULFM(B4sSsNR2eNACT9NR29NCOLoNCOL 9GAINS9NCOL 9IESR)
PRINT*g® THE G4 GAIN MATRIX IS °

CALL PRNT (GAINA&o/ACTMNR2)

IER = 0

0L = 00901

CALL TFRCACT oA pNR20M=29192)

CALL MRICC(NR2¢ACT yCTCCA yGCBO 4P yACGS ¢TOLSIER)
CALL MMUL (CHoPoNSEMINR29NR2eKTH)

IF (Z7.EQ.1) THEN

CALL VMULFP(RKA sGAMMAS ¢PL yP1 ¢NSENJNCOLoNCOL9STORHNCOL oIER)
CALL MMUL (STCReKT49PLINSENJNRZ ¢KCC)

CALL MMUL (GAMMAAJKCC o MNSENyPLoMR24KTH)

PRINT®y? "HE K&4a GAIn MATRIX IS °

ELSE

PRINTeo? THE K& GAIN MATRIX IS *

E:DOIF

CALL TFRIKOB& oXKTAHHNSE:. . 29! I

CALL PRNT (KGBA4yNR2¢NIEN,
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165 CONTINUE
E* DIF

THIS SECTION GENERATES THE BLOCK SEGMENTS
OF MAJM AND PUTS THEM INTO THE MAJM MATRIK

THE THREE CONTROLLER MATFIX WILL CONTAIN
RESIDUAL TERPMS (SEE DIAGRAM BELOW).

THE FCUR CCNTROLLER MATRIX DOES NOT
CONTAIN FESIDUALS (YET).

THE THPEE CINTROLLES MAJM MATRIX WITH
RESIDUALS MILL LCCK LIKES

[
[ ]
%
»

T
Al1+BG1 B1G1 B162 B163
¢ Al-KCl1 K1c2 K1C3
8261 A2+B62 8263 0
9 0 K2C3 0 K2ce
8361 B3 62 A3+BG3 B3G3 7
o K3C2 ] A3-KC3 K3CR

8261 BR62 BR63 AR

[ 2 JNE 2N JNE NN NN NN NN BN NN Y BN N BN AN
L2 B N B N BN BN N BN NN NN NN N AN )

[ ]
»
»
»

c
1
c
c
°C
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
C
c
c
c
C
c
c
c
c
c
c
c
c
c

e o T T ops S RNV Y TG s e T g g L

K =2 » 4yC12

KK = K ¢« " C22

L =2 » NC22 + K

LtL = L ¢ C32

Pl = 2 » NC32 + L

IF (DECJEQe3) THEN

MM = 2+NC12 « 2¢1,C22 + 2#NC32 + NP2
ELSE

MM = 2oNC12 ¢ 20NC22 + 2¢NC32 ¢ 24NR2
P2 = P1 ¢+ NR2

ELDIF

DO 200 I=1.MM

DO 200 J=1lyMM
MAJMCIgJ) = CW0

DC 201 I=1eNCL2

D9 2C1 J=1eNC12
MAJM{I9Jd) = ABGL(I4J)
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DO 202 I=1,0C22
DO 202 J=1,0:C22

202 MAJM(I*KyJ+K) = ABG2(IsJ)
DC 203 I=1,"C32
DC 253 J=19NC32
203 MAUMCI+LyJ+L) = ABG3I(I )
CALL TFRCAKC9ACGl ¢C1297C129142)
DC 204 I=1y%C12
DC 2C4 J=14NC12
204 MAYMCI+NC1249J+8C12) = AKC(IsdJ)
CALL TFRCAKCsACG2497C224HC229142)
DC 205 I=14MNC22
DO 285 J=1,yNC22
205 MAJMCI+KK 9J+KK) = AKC(IsJ)
CALL TFRCAKCyACG3I¢C3291C3291+2)
DC 208 I=14NC32
DC 206 J=1.NC32
206 MAJMUI+LL oJ*LL) = AKC(I»J)
CALL MMUL (B19GAIN1+NC129NACT4NC12,8C5)
DC 207 I=1,NC1l2
DC 207 J=1sNC12
207 MAUM(I4J+:Cl2) = BCG(IeJ)
CALL MMUL (B1s6AIN24NC129NACT9NC224BC5)
DO 238 [=1etC12
DO 2Ck J=1eNC22
MAJMUTIod*K) = BCG(Ied)
203 MAJM(IoJ#rKK) = BCG(IvJ)
CALL MMUL (B1loGAIN3IeNCL29MACT9NC3248CG)
DG 229 I=1.%NCi2
D3 20S J=1¢NC32
MAJMCI gJd*L) = BCGU(INJ)
209 MAJM(IedJeLL) = BCGU(IJ)
CALL MMUL (B2+GAINIWNC22¢NACTINC1248C6)
DC 210 I=1.NC22
DO 210 J=1y’.C12
MAJMCT+KyJ) = BCG(Ied)
210 MAJIM(I+Keu+nNC12) = BCG(INJ)
CALL MMUL (B2+GAIN2sNC22 yNACT9NC224BCS5)
DC 211 I=1,NC22
DO 211 J=1,.NC22
211 MAJM(I+KyJeKK) = BCG6(isJ)
CALL MMUL (B2+GAIN3I9NC229NACT9NC3I24BCE)
D0 212 I=1,eNC22
D06 212 J=1eNC32
MAJM(I+KyJ*L) = BCG(i.J)
212 MAJM(I+KsJ+LL) = BCG(IeJ)
CALL MMUL (B3sGAIYN14HC3I2sNACT9NC124BLS)
D0 213 I=1,44C32
DO 213 J=1,"IC12
MAJM(I*LeJ) = BCG(Is)
213 MAJMCI+LsJeNC12) = BCG(IedJ)
CALL MMUL (B3+GAIN24MC3I29NACT 9MC2248C6)
DO 214 I=14NC32 r.
D0 214 Jy=1,NC22
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MAJMCIeLsJ*K) = BCG(Ied)
214 MAUM(I+LoJ*KK) = RCG( eJ)
CALL MMUL (B34GAINI yNC3I2 47 ACT ¢NC32493C5)
DC 21% I=1,4C32
DO 21% J=1,42C32
: 215 MAJM(ZeLeJ+LL) = BCG(TyJ)
: CALL MMUL (KOB14C29\C212gN3ENgLL224KCC)
DC 216 I=1,4%C12
DO 21& J=19NC22
216 MAJMII*AC124d+K) = KCCC(I,J)
CALL MMUL (KOB19C34MC129NSEN9HNC324KCC)
DO 217 I= 1,.C12
DC 217 J= 14NC32
217 MAJMCI+.Cl29Jd+L) = KCCCIed)
CALL MMUL (KCB249C1 ¢NC229NSENGHC124KEL)
DG 21% I=1+0\C22
DG 21z J=14MC12
218 MAJUM(I*KK9sJ) = KCC(1sU)
CALL MMUL (KOB24C29NC229NSEN9NC324KCC)
00 215 I=14MC22
DC 21¢ J=144C32
219 MAUM(I+KKyJ+L) = KCC(Zyd)
CALL MMUL (KOB34C1 9isC324NSENGNC124KCC)
DO 22C I=14hC32
! DO 22%t J=14HC12
f 220 MAJUMCI+LL 4J) = KCC(IeJ)
CALL MMUL (KOB34C24NC329MSENGNC224KCD)
DC 221 I=14NC32
DO 221 J=1,NC22
221 MAJMCI+LL +Jd*K) = KCC(Iy)
CALL MMLL (B8 9GAIN1sNR29NACT9NC12,4BCG)
DC 222 I=14Ac2
DG 222 J=1eNC22
MAJMCI*FL gJ) = BCG(Isd)
222 MAJM(I+Pl 4J+''C12) = BCG(isd)
CALL MMUL (B44GAIN2¢NA29MACT¢HC224BCH)
DC 223 I=14MF2
DO 223 J=1yNC22
MAJM(T+PLl 9J*K) = BCG(IeJ)
223 MAJM(I+PLl yJ*KK) = BCGUIoJ)
CALL MMUL (B4 4GATNT ¢NO2¢NACT9NC3I24BCG)
DC 224 I=1yNr2
DG 224 J=1,1C32
MAJMCI#PLl yJ+L) = BCG(Iod)
224 MAJMLI+Pl sJ+LL) = BCG(I W) .
CALL MMUL(KOB1.ce.mc1.,~ssm,~azoKCC)
1 DC 225 I=1,".C12
D2 22% J=1¢NR2
22% MAJMCI+NC129J+P1l) = KCC(Ied)
CALL MMUL (KOB29yC8yNC229NSENSNR2 9KCC)
D0 226 !=1,NC22
{ DN 22€& J=14NhR2.
226 MAJMCI+KK 9J+F1) = KCC(ZI4J)
CALL MMUL (KOB39Ca yNC3I29NSEN9NR29KCC)




DO 227 I=1sNC32
DG 227 J=1+NP2
227 MAJM(I+LL 9Jd*Pl) = KCC(IsJ)

(s R g}

IF (DEC.EQe3) THEHN

00

CALL FOPMAC(A4+DoWoNR9“.R291IR)

DO 225 I=1.NR2

DD 22¢ J=14N-2 !
229 MAUM(I+PL oJ*P1l) = A&(1 o) i

ELSE

DO 23C I=14K°2
DC 23C J=1eNRZ
230 MAJMI+FPLl 9J*Pl) = ABGAI(I4J)
CALL TFRUAKC4ACG49NR2¢NR29142)
DC 231 I=1eh=2
DC 231 J=1NR2
231 MAJUMOI+P24J+P2) = AKC(I4J)
CALL MMUL (B1+GAINASMC129NACT9NR24BEG)
DC 232 I=1eNC12
DG 232 J=1eNR2
MAUMCIoJeP1l) = BCG(Lod)
232 MAJM(iyvJ+22) = BCS5(IsJ)
CALL MMUL (B2+GAIN49NC22¢NACTsNR24BCS)
DO 233 I=1,%C22
DO 233 J=19NR2
MAJUM(I+Ky J#F1) = BCG(I D)
233 MAUM(I+KeJ#P2) = BCG(I+J)
CALL MMUL (B3+GAINGoNC3IZ29NACT9R24BCG)
DG 234 I=14NC32
DC 234 J=14RF2
MAJM(I+LoJd+P1l) = BCG(IedJ)
2384 MAUM(TIeLeJ#P2) = BCG(IeW)
CALL MMUL (BA+GAIN4osNR29NACT¢NR29BCE)
0GC 235 I=1eNF2
DO 232 J=1,NR2
238 MAJYMLI*FLlJeF2) = BCG(IJ)
CALL MMUL (KOGB49Cl 4 NRZoNSENINC12+KCC)
DC 2842 I=1eNR2
DC 242 J=14NC12
242 MAJM(I*F24J) = KCC(IvJ)
CALL MMUL (KOB4yC29NR29NSENSNC229KCC)
DC 243 I=14NR2
DG 243 J=14NC22
243 MAJM(I®P24J+K) = KCC(IeJ)
CALL MMUL (KOB4yC349..R29NSENINC3I24KCC)
DO 2848 I=1,4NR2
DC 244 Jy=1,%C32
284 MAJUM(I+F2 4J*L) = KCC(1eJ)
EtDIF
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400

401

402

403

( 404

TAs DAH [ NCM WE HAVE THE MAJM MATPIX

TF (DECSE Qed) THENW

PRIMNTey® THE FOUR COMLTFOLLER MAUM IS °

ELSE )

PRINTeo® THE THREE CCLTROLLER MAJM W/RESIDUALS I:Z
EADIF

CALL PRAT XLCMAJMg MMy pv)

EIGENVALUE AMNALYSIS SECTION

PRINT®(// /)

PRINT»y? DPVERALL SYSTEM EIGENVALUES ¢
CALL EIGAF(PMAUM MM \DA0 9 ZoTENYNCCL ¢WORKSIER)
PRINTag® JER = %4IER

DC 4CC I=14MM

PrRINTe,y@ $92(C1)

PRINT (/7 )"

PRINT*,® EIGENVALUES OF AC ¢ BCG SYSTEM
CALL EIGIFCABS19NCl29NCOL e0o Ul ¢TELINCCLISTORGIER)
PRINT2e? [ER = %9 1ER

DO 4C1 I=1,4NC12

PRINT#,® ou1(Y)

PRINT(//)?

PRINT 2,0 EIGENVALUES OF AT -~ XCC SYSTEM
CALL TFRCAKC9ACGL#NC129%Cl201,52)

CALL EIGRFC(AKCoNCL29HCOLs0 oMLy TENONCOLSTORSIER)
PRINT#*o® IER = ®y1ER

DG 402 I=14NC12

PRINT»,® NI CD)
PRINT(//)"
PRINTa,y? EIGENVALUES CF AC ¢ BCG SYSTEw

CALL EIGIF(ABG2¢MC229NCOLs Q9 WL oTEMoNCCL9STORSIEF)
PFINT#9? IER = %9 ER

DO 403 I=1,NC22

PPINTwy® TNl ()

PRINT(//)?

PRPINT #y® EIGENVALUES OF AC - KCC SYSTEM
CALL TFRCUAKCsACG24NC22+%C2241,42)

CALL EIGRFCAKCNC22¢4COLod o N1 s TENINCOL9STCRIER)
PFINT#*9y® IER = ?,4]ER

DO 404 I=1,%C22

PRINT #y? oWl (])

PRINTO(//)"*

~
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PRINTe,? EIGENVALUES OF AC + BCG SYSTEM 3 ¢
CALL EIGIFCABG39NC3I29%CCLo09WLoTENSNCCL9STORWIER)
PRINTee® IFR = ¢,][ER
DC 405 I=1.NC32

405 PRINTe2,? TeWliI)
PRINTOC(//)Y

PRINT=,® EIGENVALUES OF AT - XCC SYSTEM 3 ¢
CALL TFRCOAKCyACG3I9"C2249%5C329142)
CALL EIGTFC(AKCoNCI29NCOLCoM1oTENINCOLOSTORGIER)
PRINT#y?% IER = %, IER
DC 4pe 1=1,NC22
406 PRIMTe,? SyN1CI)
PRINT?(//)*
IF (NFEQ0) THEN
FPINT»e® MO RESIODUAL TERM EIGENVALUES *
60TC 410
ENDIF
IF (DEC.EQe&) THEN

PRINT #4* EIGENVALUES F AT ¢ BCG SYSTEM &4 ¢
CALL EIG2F(ABGA 4L -24NCOL 90 o W19 TENINCOLISTORSIER)
PPIKT#y® IER = PyIER
DO 407 I=1,NR2

407 PRINTt,? THN1(I) )
PRINT®(//)?

o
PRIET 2y EIGENVALUES OF AC - KCC SYSTEM & ¢
CALL TFRCAKCsACGH s NR29NR29142)
CALL EIGRFC(AKCOKRZ oNCCL 90 oW1 TENSNCCLsSTCRIIER)
PFINT=e® IER = ®,]ER
DO 4CE I=14MN~2
408 PRINTa,® TeWl(I)
c
ELSE
c
PPINTxy® EIGENVALUES OF THE A RESIDUAL MATRIX *
CALL EIGIFC(A4sNR2yNCCL 9O oW1 o TENJRCOLSTIRHIER)
PRINTsp® IER = 94 1ER
DO 409 I=1¢NR2
409 PRINTy? fol1C]I)
ErDiF
PRINTO(/7/7)"
c

410 CONTINUE
IF (22.EQ¢1) GOTO 600

THIS SECTION FORMS THE TRANSFORMATION MATRICES.

TO GET MAJM IN UPPER TRIANGULAR FGRMy IT IS .
NECESSAPY TO DRIVE THE B2Gles B3Gly B3G2s KX2Cly *.
K3C1 AND K3C2 TERMS TO ZERO (THREE CTLR3)e
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WHEN FCUR CONTROLLERS ARE USEDs ~HEN MAYM
MILL INCLUDZ G4 AND K4 TERMS. IT WILL THEN
BE MNMECESSARY TO DRIVE THE B46(I)y A*D K&C(I)
TERMS TC ZER Oy AS VELL.

AFTER THE TRANSFORMATIGHN IS COMPLETES
THE THFEE CONTROLLEFP MAJM (WITH RESIDUALS)
WILL LOCK LIKE:

»
»
[ ]
[

[ 2 BN BN BN NE NN BN BN BN NE BN BN BN BN )

A1+B6G1 B161 B162 8162 B1G3 B163

0 Al-KC1 Kic2 0 K1C3 0
0 0 A2+BG2 B262 8263 B263
0 9 o A=KC2 K2C3 0
0 0 0 0 A3+B63 B363
0 0 0 e 3 A3-KC3
BRG1 BrR61 BR&2 BRG2 BR6G3 BRE63

»
»
L
»

WHERE THE MON=ZERO TERMS INCLUDE THE TRANSFORMATICN
MATRICES.

ON VITH THE TRANSFORMATION MATRICESC

FIRST THE OBSERVER GAIN MATRIXy K&
MHEN USING FOUR CONTROLLERS

501

IF C(DEC.EQea) THEN

CALL TFRCCToCloNSENeNC129192)
DC S00 I=1eNC1

DO 50C J=1oNSEN

V(Ied) = CT(IsJ)

CALL TFRUCT.C2oNZENINC229142)
DO S01 I=1,.NC2

DC SG1 J=1oNSEN

V(I*NCled) = CT(I,4J)

CALL TFRCCTeCIgNSENSNC3I2e4192)
00 502 I=1,NC3

DC 502 J=19NSEN
V(I+NC2oNClod) = CT(14d)

K1cCR

K2CR
C
K3CPR

AR

]
|
[}
L2 B 2N B JNE I BN N B B NN N RN NN W

»
[ ]
»
»




NPY = NCL ¢ NC2 + ®C3
PRINT#»9® V (C1/C2/C3) IS ?
CALL PRNT (VoMRVeNSIEMN)
CALL LSVOF(VhCOL IyNFVINSENITENJNCCL9~19SING9STORYIER)
PRINT ot ¢
PRINT«y® LSVDF K& IER = *®41ER
PRINTO(// )"
PRINTs9® V OUT OF LSVYOF IS ¢
CALL FRNT (VeMNSENINCEMN)
Pl = NSEN = N&V
IF (P1l.LT.1) THEN
DO S03 I=1NSEN
583 GAMMAA(Is1) = V(I NSEN)
PL =1
ELSE
DC S04 I=1¢NSEN
00 504 J=1,P1
S04 GAMMA4(IyJ) = VIyJdekRV)
ELDIF
PRINT»¢® TRANSFORMATION MATRIX GAMMAS ¢
CALL PRNT (GAMMA4 s NSENePL)

R g O R PR AR e o

c

C CHECK TC SEE THAT GAMMA4 IS ORTHOGONAL TO Z14C2¢ A“D C3
c

C NOTES AKC Il THIS SECTION IS JUST A WORK AREA TO TEST

c THE ORTHCGONALITY CF CT +« GAMMA. IN ALL CASES IT
c SHOULD BE A BLGCKX ZERDO MATRIX.
c

e e i At - et s i o kBl 7 i 0D

! CALL TFR(CTeCleNSENe%C1249142)

CALL MMUL CCT yGAMMAG4*.C129yMSENsP1 yAKC)
PFINT29® C1T « GAMVASG ¢

CALL PRNT (AKCyNC12,4P1)

CALL TFR(CTsC2yN3ENC229192)

CALL MMUL (CTyGAMMA&,..C224NSENsP1 9AKC)
PRINT#9 " C27 o GAMMAS 9

CALL PRN™ (AKC ¢8C224P1)

CALL TFRCCTC3oNIENINC3I249192)

CALL MMUL (CT9GAMMA49NC329NSERePL 9AKC)
PRINT*9® C3T o« GAMMASG ¢

CALL PRN" (AKCyNC324P1)

PRINT#o® C123 SINGULAX VALUES ¢
CALL PRNT (SIMNGsMNRVel)
CALL TFROUTRT ¢GAMMAQ 1. SENePL9142)
CALL MMUL (TRT 9GAMMAQ ¢F1 sNSENPLoRK])
CALL GMINVI(PLlsPle~KeRKA 9JsTAPE)
CALL TFRCCT9CAWNSENINF291492)
CALL MMUL (TRT oCO9P1oMNSENNR2 9AKC)
CALL MMUL (CT9GAMMA G472 yNSENsPLleKOBS)
CALL MMUL (KOBA gRKA¢NR29PL9P19STOR)
CALL MMUL (STOR9AKC9sNR29P1oNR2+CTCCH)
{ €nDIF
c
C THIS CTCCA WILL BE SUBSTITUTED BACK INTO

R v Vemn o A TS a2 % gparept: TR

MIIC
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c

SYSTEM 4 TO GET A NEVW Ka.

NOW THE OBSERVER GAIN MATRIXe K3

505

3506

S07

So3

CALL TFRCCToCloNIEN9NC124192)
DC 565 Iz14*Cl

DO S0S J= 1yNSEN

VI sd) = CT(I4d)

CALL TFRCCT4C2oMNENSHC229192)

DO SC& I=1,4KC2

DO 506 J=1eN3EN

VCIeNClyJ) = CT(I )

NRV = NC1 + %C2

PRINTee® v (C1/C2) IS ¢

CALL PRNT (VyhRV,LSEN)

CALL LSVDF(Vy*COLyNRVINSENsTENyNCOL»=19SING9STORZE?)
PSINTey? ¢

PRINTeo® LSVOF K3 IEF = *,IER
PRINT®(//)?

PRINTey? V OUT OF LSVOF IS *

CALL PRNT (VoASELWNSEN)

P2 = NSEN = NTV

IF (P2.LTe1) THEN

DC SG7 I=14MNSEN

GAMMASC(I,1) = V(I NSE%)

P2 = 1

ELSE

DO S0& I=14NSEN

DG 50& J=1,402

GAMMAZ(IsdJ) = V(I oJeNFV)

ENDIF

PRINT#9® TRANSFORMATION MATRIX GAMMA3 ¥
CALL PRNT (GAMMA3oNSE%eP2)

CHECK TC SEE THAT GAMMA3 IS ORTHOGONAL TO C1 AND C2

CALL TFRECT9CloNSEN9NC1201492)

CALL MMUL (CToGAMMA39:C12¢NSENGP29AKC)
PRINT2y® C1T =« GAMMAS ¢

CALL FRNT (AKCoNiCl12,4P2)

CALL TFRCCToC2eNZENINC229142)

CALL MMUL (CT9GAMMA 39 iC229NSEN9P2yAKC)
PRINT29® C2T = GAMMAJ ¢

CALL FRNT CAKCo¢NC22,P2)

PRINT 29" C12 SINGULAR VALUES ¢
CALL PRAT (SINGoeNRVel)

CALL TFRCTRT9GAMMAZINIENsP29192)
CALL MMUL (TRT9GAMMA3¢P2 yNSEN9P24FK)
CALL GMIYNVIP29P29RKeFK39JeTAPE)
CALL TFRC(CTyC3IoNSENINC3I29192)
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CALL MMUL CTRT9sC39P2¢PSENINC3I24AKC)
CALL MMUL (CT+GAMMATZ 4 LC32,NSENJPZyK2BI)
CALL MMUL (KOB39RKI9NC329P2¢P24STOR)
CALL MMUL (STOR9AKCs\NC32¢P2¢NC3I29CTCC3)

CTCC3 WILL BE SUBSTITUTED BACK INTO
MRIC~-SYSTEM 3 FCR A “ENW K3

NOW THE CBSEARVER GAIN MATRIXs K2

509

510

511

CALL TFRCOCTCLNSENINC129192)
DC S0 I=1NC1

DO 509 J=1¢NSEN

VIIed) = CT(I 4N

PRINT=9®* V (C1l) IS *

CALL PRMT (VeNC1l,yNSEN)

CALL LSVDF(VeNCOLNCLoNSENSTENINCOL9=19SING9STORGIEF)
PRINT oy ¢

PRINT=o® LSVOF K2 IER = ¢,]EF
PRINTY(// )"

PRINT*y® V OQUT GF LSVDF IS *
CALL PRNT (VoNSEMNNSEN)

P3 = NSEN - NC1

IF (P3eLTel) THEN

DC 510 I=14NSEN

GAMMA2(Iv1) = V(I NSEN)

P3 = 1

ELSE

DG 511 I=14NSEN

DG 511 J=14P3

GAMMAZ (I9J) = V(IsJehCl)
ENDIF

PRINT24% TRANSFOTMATION MATRIX 6AMMA2 ¢
CALL PRAT (GAMMA2,NSEN9P3)

CHECK TG SEE THAT GAMMA2 IS ORTHCGONAL TO Ci

CALL YHMUL (CT+GAMMA24¢%CL2oNSENsP3I+AKC)
PRINT#9® CI1T & GAMMA2 ¢
CALL PRNT CAKCoNC1Z+P2)

PRINT#¢® C1 SINGULAR VALUES *

CALL PRNT (SINGeNC1,1)

CALL TFROTRT9GAMMA29NZIENIP3I9192)

CALL MMUL CTRT ¢GAMMA2¢P 3 ¢NSEN¢P3I9RK)
CALL GMINVI(P3IWPIgFKeRK29JyTAPE)

CALL TFRCCTC2eNSEN9NUC2291+92)

CALL MMUL (TRT4C29P39*ENWNC229AKC)
CALL MMUL (CToGAMMA2,, .C229NSENP3I9KIB2)
CALL WMUL (KOB29RK2 ¢NC22¢P3eP39eSTOR)
CALL MMUL (STOR¢AKC ¢tiC22 4P 39eNC22+CTCC2)




(s Rz N e Nz xRz N Nalzl

00000000

CTCC2 WILL BE SUBSTITUTED BACK [NTO
MRIC-SYSTEM 2 FC< A NEW K2

NOM THE CONTROLLER 6AIN MATRIXs 63

IF (DEC.EQed) THEN
DO S12 I=14AF
OC 512 J=1,NACT
S12 V(Ied) = Ba(I+NPed)
PRINTey® V (B4) Ic @
CALL FRNT (VeMR¢NACT)
CALL LSVDFU(VeNCOL gNRoNACT o TENONCOL 9=19SINGsSTCRSIER)
PRIANT eyt ¢
PRINT »y® LSVDF 62 IER = %,41IER
PRINT®(// )
PRINT=e?® ¥ CUT CF LSVDF IS ¢
CALL PRNT (VoNACT,NACT)
E2 = NACT = NR
IF (E2.LT 1) THEN
DC S13 I=1,,NACT
S13 T3CIel) = V(ILNACT)
£2 = 1
ELSE
DO S14 I=14NACT
DO S14 J=1,E2
S18 T3(Ied) = VY(IedenT)
ENDIF
PRINT#e® TRANZFCRMATION MATRIX T3 ¢
CALL PRNT (T3IWNACT¢E2)

CHECK 7O SEE THAT T3 IS ORTHOGONAL TO B%

NOTE: IN THIS SECTICNs BCG6 IS THE WORK AREA
FOR B » To IN ALL CASES THESE SHOULD
BE BLOCK ZERO MATRICES.

CALL MMUL (B4 T39NP29HACT 9E2+8C6)
PRINT«y® B4 » T3 ¢
CALL PRAT (BCGsNR24E2)

PRINT+y* B4 SINGULAR VALUES °*
CALL PRNT C(SINGyNR41)

CALL VMULFMCTI 4TI ¢NACT9E29E2¢NCOLINCOLoRK9NCOL oIE?)

CALL GMINVCE24E2¢PKorG39JeTAPE)

CALL MMUL (B30T 39NC32¢'.ACT ¢E24K0B3)

CALL MMUL (KOBIoPGI ¢ iCI2¢E24E2+SATY)

CALL VMULFPU(SATI ¢ " 3¢4%C329E29MNACToNCOLINCOLWKNBISNCOLy ER)
CALL VMULFP(KGCBI9B3IghCI2oNACToNCI29NCOLONCOL 9SATIGNCOL oIE=)




. - —

ENDIF

THIS SAT3 WILL BE SUBSTITUTED BACK INTO MRIC
SYSTEM 3 FGR A NEW G3.

NOW THE CORTROLLER GAIM MATRIXs G2

A AO00

DC 515 I=14NC3
: DC 515 J=1sNACT
? 515 VCIyd) = B3CI+NC3yd)
! IF (DEC.EQ.4) THEN
! DC 516 I=1eNR
i DO 516 J=14NACT
; 516 VII+NC39J) = BalI+hRyJ)
; PRINT#y* Vv (B3/Ba) IS ¢
: MRV = NC3 + NR
}
(
}

ELSE
PRINT#»e® YV (B3) [" ¢
NFEV = NC3

- ELDIF
CALL PRAT (VoHiRVsNACT)
CALL LSVOF(Ve COLeNRVGHACT g TENGNCCL =1 9SINGeSTTRIER)
PRINT 24" @
PEINT#e? LSVDF G2 IER = Vv,]1ER
PRINT®(/7 )0
PRINT*y? V OQUT OF LSVDF IS °*
CALL FRNT (VeHACTohACT)
E3 = MACT = NSV
IF (E3.LTel) "HEN
DC 517 I =1sNACT

S17 T2€I+1) = V(I ¢NACT)
£3 =1
ELSE
07 51t I=1.KACT
DC S18 Js14E3
S18 T2(Ied) = V(IsJeNRV)

ErDIF
PRINT»9? TRANSFOARMATICN MATRIX T2 ¢
CALL FRNT (T2oNACTSE)

C CHECK TG SEE THAT T2 IS CRTHOGOMNAL TC B3 AND Ba

CALL MMUL (B39T729NC329MACT9E3 98CG)
PRINT#4" B3 » T2 ¢
CALL PRAT (BCG¢1C3I24E3)
IF (DECJEQe8) THE™
CALL MMUL (BA9T24,NR29NACT 9E3I9BCG)
PRINT#¢? B& » T2 ¢
i CALL PRNT (BCGoNR2+E3)
ELDIF
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IF (DEC.EGe3) THEHN

PRINT »¢® B3 SINGULAR VALUES *
ELSE

PRINT*y® B34 SINGULAR VALUES *
ENDIF

CALL PRNT (SINGeNRV2)

CALL VMULFM(T24T29NACT ¢E34E3sNCOL9NCILwIKgNCCL HIES)

CALL GMINVI(E3IE39y7K9RG24JyTAPE)

CALL MMUL (B29T29NC22911ACT 9E39KCB2)

CALL MMUL (KOBZ43GZ29NC229+E3I9E34SAT2)

CALL VMULFPUSAT2s "29¢/.C22¢E3¢MACTo?.CCLoNCOL 9K B2yNCOL9IER)
CALL VMULFP(KCB2¢9829!.C229NACTINC229NCOLyNCOL9SAT24NCOL+IE")

SAT2 WILL BE SUBSTITUTED BACK INTG
MRIC=SYSTEM 2 FOR A NEW G2

NOW THE CONTROLLER GAIM MATRIX, G1

O0000aO0O000

DG 515 I=1isNC2
DC 519 J=1oNACT

S19 V(Id) = B2C(I+NC2o0)
D0 S20 I=14NC3
DO S52C J=1y¢NACT

520 V(I +hC24J) = BIL(I+.C3yJ)
IF (DECeEQad) THEN
D0 S21 I=1,8R
DG 521 J=1NACT

S21 V(I*AC2+NC39J) = BAC(I+NRJ)
PRINT=2e® U(B2/8B3/8B4) S ?
NRV = NC2 + NC3 + NR
ELSE
PRINTe«y* V (B2/8B3) 1S °*
NRY = NC2 + NC3
E'.DIF
CALL PRNT (VeNRVeNACT)
CALL LSVOF(VoACOLsNRVINACT9TENGNCOL 9=19SINGsSTORGIER)
PRINT e ¢
PPRINT«y? LSVOF G1I IER = f®oIE®
PRINT®C//7 )"
PRIMNT#*9y? ¥V OUT QF LSVDF 15 ¢
CALL PRNT (VoNACTINACT)
E4 = NACT - NRV
IF (E4.LT.1) THEN
DC S22 I=1NACT

522 T1CIel) = VIIWNACT)
£Ea = 1
ELSE

{ DO S23 I=14¢NACT
- DO 523 J=14E4
$23 T1C(IeJd) = V(IgJeNRV)




ENDIF
PRINT#4? TRANSFORMATICN MATRIX T1 ¢

CALL PRAT (T1sNACTHES) ~
c
€ CHECK TO SEE THAT T1 IS GRTHOGOMNAL T- B2.B34B&
Cc
CALL MMUL (B2,4,T1,MC223NACT 4E4 4BCG)
PRIMTy® B2 « T1 ¢
CALL PRAT (BCG4ANC224E4)
CALL MMUL (B34714°C32¢° ACT9yE4,4+8CS)
PRIKTa,y? B3 o« T ¢
CALL PRAT (BCGWNC3I24£4)
IF (DECE2e4) THEN
CALL MMUL (BR4T1 40229, ACTeES»BCG)
PRINT»o® B4 » T1 *
CALL PRNT (BCGosMNRZSES)
ELNDIF
C
IF (DEC.EQ3) THEN
PRINT+y® B23 SINGULAR VALUES @
ELSE
PRINT»y" B234 SINGULAR VALUES *¢
ELDIF
CALL PRANT (SINGeANRVel)
(o4
CALL VMULFMUIT1 Tl +NACT pEQ2EQ NCCLINCOLoIK9NCOLHIE)
CALL GMINV(ESG,E49~X9RGlsJde TAPE)
CALL MMUL (BleT19/C12¢:.ACT¢E44KCB1) )
CALL MMUL (KOB1)9~G1yhC129E4<E44SAT)
CALL VMULFPC(IATyT214NC129EA39NACTyMNCOL e CSLIKIB1oNCCL 92 ER) i
c CALL VMULFPIKTBl9Ble \Ci29MACT ofICL24NCrL oNCOL ¢SAT L CGL 9IFF)
c
€ SAT1 MILL BE SUBSTITUTED BACK INTO MRIC-
C SYSTEM 1 FOR A NEW G1
Cc
(o
22 = 1
6070 115
600 CCNTINUVE
22 = 0
c
c
€C THE PROBLEM IS NOW COMPLETE
Cc
c
PRINT®(// /)
FRINT«e® THIS RUN HAS BEEN COMPLETEC ¢
PRINT®(///)
c
Cc
C FROM HERE WE CAN START OVERy REARRANGEs OR STOP
C
Cc
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PRINT#y® ENTER
PCINT e ¢
PRINT»¢® ENTER
PRIN a2y ¢
PPINTse® ENTER
PCINTage @
PRINT#4® ENTER
READ(Zs*) Q
PRINT®*(//7)°
PRINT*5@Q

IF (Q.EQel) THEN
&07T0 10C

ELSE IF (GQeEQ.2)
607G 28

EXDIF

END

.

THEN

TO CHANGE THE WEISHTING MATRI
TO MAKE A FOUR CONTROLLER RUN
ALSGy TO REARRANGE MODES FIR

TO TERMINATE THIS JCB *

X

"

LRy
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Appendix D
Program Subroutines
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15
1000

20

25
50

SUBROUTINE FACTOR(NsA S oMR)
A=S12S
DINMENSION A(1)9S(C1)
COMMON/MAINB/NCOL yNCOLL
COMNON/INQUT/KOUT
TOLz1.E=~6
MR=0
NN=N2NCOL
TOL1=0.
00 1 1=1sNNyNCOL1
R=SABSC(AC(CI))
IF (Re5TL.TOLL) TOLILI=R
TOL1I=TOL1*»1l.€E-12
11=1
DO S0 Izl N
IMl1=I-1
DO S JJ=T9NNeNCOL
StJJ)=0.
[D=II+IML
R=ACIO)-DOTC(IMLSCIIY,,S(ITI))
IF (ABS((RDI.LT.(TOL*ACID)+TOLL)) GO TO S0
IF (R) 15,450,420
MRz==1
WRITE(KOUT,1000)
FORMAT(ITHOTRIED TO FACTOR AN INDEFINITE MATRIX )
RETURN
S(ID)»=SQERT (R)
MR=MR +1
1F (L EQ.N) RETURN
L=ITI+NCOL
00 25 JJU=L +NNWNCOL
[Jd=Jdd+inml
SUIUI=CACTIJI=DOTC(IMI»SCII)StUUIII/SCID)
II=TI+NCOL
RETURN -
END

Ay

SUBROUTINE FORMA(ADeWININ2,1IC)

COMMON/MA TNR/NCOL .
REAL ACNCOL +NCOLI »W(LTYD(1T)

INTEGER T CUIN)sIsJoNeM

DO t I=1,N2

00 1 J=1yN2

A(l 3sJ)=0.0

CONTINUE

00 2 I=1yN

M= IC(I)

ACCI*N)y (I+N))IZD(M)

AC(L y(I+N)) 1.0

ACCI+N) 1) =(W(M)ae2)

CONTINUE
RETURN
END




[ S

‘.
———
.

SUCROQJITIHE FORMU(B sPHI sNeN24NACTIC)
COMMON/NAINB/NCOL

REAL B(NCOL ¢NCOL) »FHI (NCOL oNCOL)
INTEGER [C(N) NACT4NyMyl,u

DO 1 [=1sN2

DO 1 J=1,NACT

B(Iesd) = 0.0

CONTINUE

00 2 [=1sN

M = IC(D)

DO 2 J=1,yNACT

BU(N+I)sd) = PHI(MeJ)

CONTINUE

RETURN

END

SUBROUT INE FORMC(C+PHIS ¢yNasN2yNSENLIC)
COMMON/MAINB/NCOL

REAL CUINCOULWNCOL) sPHISI(NCOLsNCOL)
INTEGER ICIN) +MINSENsNeN2sId

DO 1 I[=1+NSEN

DO 1 JU=14N2

C(Isd) = 0.0

CONTINUE

00 2 [=19NSEN

00 2 J=1)N

M= IC(Y)

ClIsd) = PHIS(My])

CONTINUE

RETURN

ENO

SUBROUTINE FORMQ(QsA9sN»IC)
COMMON/NMAINB/NCOL

REAL A(NCOL),»Q(NCOLsNCOL)
INTEGER I vJsKoeMyNIN2,ICI(NCOL)
N2 = N = 2

DO 1 I=1,N2

DO 1 J=1,N2

Q(IsJ) = 0.0

CONTINUE

DO 2 I=14N

J f

M 1IC(D)

DO 3 K=I=1,I

QUI+K4U*K) = A(M)

CCNTINUE

RETURN

END

114




20

30

50

54
55

65

70

SUBROUTINE, GHINVI(NRINC A sUyMRyMT)
DIMENSICH ACL) UCL)

COHHON /KA (N1 /NGIMoNDINL S (L)
COMMON/MA INB/NCOL +NCOLL
COMMON/ IN CUT/KOUT

TOL=1.E~12

MR=NC

NRM1=NR-1

TOLI=1.E-20

Jd=1

DO 100 J=1,NC

FAC=DOT (NRsA(JJ) yA(JII))

JM1 =J-1

JRM=JJ+NR M1

JCM=JU+UM1

DO 20 I=JJyJCM

) (I)=0.

U(JCMI=1.0

IF (J.EQG.1) 60 TO 54

Kk=1

DO 30 K=1 yJMl

IF (S(K).EG.1.0) GO TC 30
TEMP==DCT (NRsACTJJ) »A (KK))
CALL VADD (KsTEMPyU(JJ) s ULKK))
KK=KK+NCOL

DO 50 L=1,2

KK=1

DO S0 K=1 »JML

IF (S(K).EQ.0.) GO TO 50
TEMP==-DOT (NRyACJJ) s ACKK))
CALL VADD(NRTEMF y ACJJ) +ACKK))
CALL YADD(KsTEMP,U(JJ) s UCKK))
KK=KK+NCOL

TOL1=TOL*FAC

FAC=DOT(NR)A(JJ) yACJII))

[F (FAC.6T.TOLL) 60 TO 70

DO 55 [=JJsJRM

A(I)=0.

S(J)=0.

KK=1

DO 65 K=1,J%1

IF (S(X).EQ.0.) GO TO 65
TEMP=-DOT (Ko U(KK) ¢UCJI))

CALL VADD (NRyTEMP s A(JJ) yA(KK))
KK=KK «NCO L

FAC=DOT (J,UCJI) »U(JJ))
MR=MR~-1

60 10 75

S(J)=1.0

KK=1

DO 72 K=1.JM1

IF (S(K)sEQele) GO TO 72
TEMP==DOT (NRYA(JJ) s A (KK))
CALL VADOTK'sTEMPsU(JJ) sUIKK))




Oon

72
80
85

100

110

120

125

130
135

10

15

KK=KK+NCOL

FAC=1.,/SGRT(FAC)

CO 8C I=JJsJRM

A(LID=A(]) »FAC

DO 85 I=JJsJCM

UCEI)=U(l)»FAC

JJ=JJ+NCOL

IF (MR.EG.NR,OR.MR.E@.NCY GO TO 120
IF (MT.NE Q) WRITEC(KOQUT +110)INR sNC MR
FORMAT (I3 +1HX»I2:18H M RANK,I2)
NEND=NC+*NCOL

Ju=1

DO 135 J=14NC

DO 125 I=14NR

(i=1-yJ

S(I):o.

DO 125 KK =JJsNENDNCOL
S(IN=SC1) +A(I[+KK)+U(KK)

[I=J

DO 130 I=1,NR

UCIL)=5(1?

II=11+NCOL

JJd=JJ+NCOLL

RETURN

END

SUBROUTINE INTEG(N:A»CsSsT)
SZINTEGRAL EA+C+EA FROM 0 TO T
C 1S DESTROYED

DIMENSION A(L)C(1),S(1)
COMMON/MAINL/NDIMyNDIML oX(1)
COMMON/MATNB/NCOL sNCOLL
COMMON/MAIN2/COEF (100)
NN=N+NCOL

NML =N-1

IND=D

ANGRM=XNORM(N,A)

DT=7

(F (ANORM+*ABS(DT).LE.0.5) GO TO 10
DT=DT/2.

IND=IND+1

60 T0 S5

DO 15 I=1+NNeNCOL

Js1eNml

DO 15 Ju=Id

S(JJI=0T+C(IJ)

Ti=DT«22/2,

DO 25 IT=3,15

CALL MMUL (AyCosNyNsNes X)

DO 20 1=1+N

[iI=(I=-1)sNCOL

DO 20 JJ=IyNNeNCOL

TI=11el




20
25

30

35

40

S0
53

60

70
75

80
85

87
90

100

CCUII=(XCIJ)+X(II)I~TYL
S(JJI=S(JI)=C(US)
TL=OT/FLOAT(IT)

[F (IND.LEQ.0) 60 TO 10
COEF(11)=1.0 .
D0 30 I=1,10

II=11~-1
COEF(II)=DT+COEF(II+1)/FLOAT(I)
I1=1

DO 40 I=1 +NNyNCOL
J=I+NM1

DO 35 JJd=1,4J

X (JJIZAJJY)=COEF (1)
X(I1ID)=X(I1)+COEF(2)
TI=IT+NCOLL

DO 55 L=3.,11

CALL MMUL (AyXsNeNsN,yC)
II=1

T1=COEF (L)

DO 55 I=1 ,NNyNCOL
J=I+NM1

DO SO0 JJ=IyJ
X(Jd)=CJJ)
XCID)=X(I1)+T)
1I1=11+NCOL1
X=EXP(A+DT)

L=0

L=L+1

CALL MMUL (XS NNy N9C)
=1

DO 90 I=1 4N

J=I1

IF ([.EQ.1) GO TO 75
DO 70 Ju=[+I1sNCOL
S(JJI=S(J)

JsJd+1l

DO 85 JJ=IN

KK=JJ

DO 80 K=I «NNsNCOL
SCJUI=S(J)+C(K)+X(KK)
KK=KK+NCOL

J=J+NCOL

DO 87 JJy=TsNN,NCOL
CCJUI=X(JIJ)

II=IT+NCOL

IF (L.EQ.IND) GO TO 100
CALL MMUL (CyCoyNyN Ny X)
GO Y0 60 *
CONTINVE

RETURN

END
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15

20

25
30

35
40

60

65
70

SUBROUTINE MLINEQ(N»AsCeX»TOLSIER)
SCLVES 7' XeXAs(=C

A AND X CAN BE IN SAME LOCATION
ANSWER RETURNED IN C AND X
DIMENSION ACL)CC1)4X(1)
COMMON/MATINB/NCOL »NCOLY
COMMON/MAINI/F (L)
ADV=TOL ] .E~-6

D=5

DT1=0.

NN=N*NCOL

DO 5 II=19+NNyNCOLY
DT1=0T1~-A(IL)

DYT1=DT1/N

[F (DT1.6T<4.0) OT=0T+4,.0/0T1
11=1

DO 20 I=1.N

DO 15 JJ=1.NNsNCOL
X(JJI=DT* ACJJ)
XCII)=X(I[)-.5
II=IT+NCOL1

CALL GMINVCNeNyXyF ¢MR,0)
IER=A

IF (MR.NE . N) RETURN

CALL MMUL (CoF +NoNsNoX)
INITIALIZATION OF XoF

I=1

DO 40 II=1,NNyNCOL

J=11

1F ({.EG.1) GO TO 30

00 25 Ju=TI+IIsNCOL
CtJ)=Clu)

JzJ+l

10=J

DO 35 JU=1I1sNNeNCOL
CCJI=DT«DOT(NWFC(IINeX(JJ))
NENES!

F(ID)=F(ID)+1.0

1z1+1

DO 90 IT=1+20

NEZ=0

CALL MMUL (CoF NN Ny X)

I=1

11=1

J=1

60 TO 70

J=11

DO 65 JJU=T»1T1NCOL
C(JI=C(JIJ)

NEREDY

I0=yJ

DT1=C(J)

DO 75 JJU=I1+NNyNCOL
ClIIZClUY+DOTINSF(IT) X (IJI))
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75

80

90
95

150

155

300

J=Je}

JzJd-1

DC 80 Juz=II,y
X(JJI=F )

IF (ABS(C(ID)).6T.1.E150) 6O TO 95
IF (ABS(CUIDY-DTL1)LT.(ADV*TOL+ABS(C(ID)))) NEZ=NEZ+} -
1=1+1

I1=JI+NCOL

IF (l1.LE.N) GO TO 60

IF (NEZ.EQ.N) GO T0O 150
CALL MMUL (XsX sNsNN»F)
CONTINUE

1ER=1

RETURN

CONTINUE

NM1=N-1

DO 155 1=1)NNyNCOL
I1=z1+NM1

DO 155 Jy=I+11I
X(JJ)=C(JyJ)

IER=0

RETURN

END

SUBRCUTINE MMUL (X»7+sN1sN29yN3,2)
COMMON/NMA INB/NCOL

DIMENSION X(NCOLv1)eY(NCOLy1)Z(NCOLYL)
DO 3 J=1,AN3

DO 2 I=1,N1

S$=0.

DO 1 K=1yN2

SS+X(I9K ) *Y (Ko J)

Z2(1+J)=28

CONTINUE

END

SUBROUTINE MRIC(NyA«S+1QsXsZyTOLHTIER)

DIMENSION A(1)+SC1)+Q€2)eX(1),2¢1)
COMMON/MAINI/NDIMN,NDIMLF(1)
COMMON/NMA I NR/NCOL yNCOL1]

CORMON/RMAIN2/TR(1)

COMMON/ INOUT/KOUT

ADV=TOL*1 .E~B

NN=N*NCOL

NML1=N-1

IND=1

COUNT=0.

IF ([ER.EQ.L) COUN7=99.

JF (IER.EQ@e1) MR:=N

IF (IER.E@.1) GO T0 100

11:-1. .
CONT INVE .,
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(s XeNel

15

17
18
100

16

20
101

25

1ER=0

COUNT=COUNT+1,

OC 12 I=L N

DO 1% J=I +NNWNCOL

X(JIy==S¢J)

CALL INTEG(N:A»XsZHyT1)

CALL FACTOR(N»ZsX+MR)

1ER=1

IF (MR.LT.0) 60 TO 200

1ER=0

CALL GMINVINsNsXe¢Z MR 0)

CALL TFRCTReZ«NeNy112)

CALL MMUL (Z+TRsNsNsNrX)

00 18 1I=31.NN,NCOL)

1=11

DC 17 J=TT+NNINCOL

XCJI=(X(JIeX(I))/2.

X(1H)=xXJ)

I=1+1

CONTINVE

CONTINUE

D0 16 I=1N

TR(1)=~-1.0

A+SX IS STABLE

POSSIBLE UNCONTROLLABILITY IF MR.NE.N
JIN DILLOW IS A NUTTY MATH PROF

TOL1=T0L710.

MAXIT=40

00 40 IT=1yMAXIT

IF (1IER.EQ.1) 60 TO 101

CALL MMUL (SeX +NINsNIF)

CALL MNUL (XeF NsNsN12Z)

DO 20 1:=1 +NNyNCOL

TI=IeNR1

00 20 J=I .11

X(JI=ACJ)Y -F(J)

ZCJY¥=Z(J) Q)

CONTINUVE

LER=0D

CALL MLINEQ(N+X+2+X+sTOLI1IER)

IF (IER.NE.O) GO TO 200

L=0 '

C1=0.0

11=1

DO 25 I=1,N

1F C(ABS(X(II)~TR(I))LT(ADV+TOLX{31)3)) L=L )

TR(I¥=XCI 1)

11=1T+NCOL]

Ci=Cl+TR(I)

IF (ABS(C1).6T.1.,£20) 60 TO 50

IF (LNE.N) 6O TO 40

CALL GMINVININIZ+F MR D)

CALL MMUL (SeXsNsNsNe2)

DO 30 121 NNJNCOL
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£33y R el e s - A

T

30
35
A0
45
50
55
640

65
200

250

II=1+NM}

DO 30 J=1,11

Z(JY=ACYY=Z(J)

IF (MR.NE.N) WRITE(KOUT +35)MR
FORMAT(27HORICCATI SOLN.1S PSD=-=RANK »13)
GO TO 65

CONTINUE

WRITE(KOUT »48) MAXIT

FORMAT(2THORICCATI NON-CONVYERGENT IN 412911H ITERATIONS)
60 T0 6¢

WRITE(KQUT+55)IT7,T1

FORMAT(30HORICCATI BLOW~UP AT ITERATION 4(I2:12H INITIAL 1=
1ER=1

RETURN

IF (INDJ.E@+2) GO TO 250

IF (COUNT .GE.10.) RETURN
T1=T1/(2.+**COUNT)

IND=2

60 T0 300

T1=T1+(2.++COUNT)

IND=)

60 70 300

END

SUBROUTINE PRNT(MAT N, M)

COMMON/MA INB/NC DL

REAL MATUINCOL +NCOL)

INTEGER Nl odsKsn

PRINT *y? ?

1F (M.6T7.12) 6070 2

DO 1 I=1,N

PRINT?C1IX s12F10 4279 (MAT(TI sJ)ed=1l o)
CONTINUE

GOT0 19

CONTINUE

IF (M.61.24) THEN

CALL PRNTXL(MAT NoM)

RETURN

ENOIF

DO 3 I=1,N

PRINT*(1IX s12F1064) o (MAT(IsJ) oJd=1912)
CONTINVE

PRINT (/7

00 4 [=1,N
PRINTY(1X212F10.4)*3(MAT(Id),yJd=13M)
CONTINUE

PRINT®*(/77) .
RETURN

ENO

121
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NV TR e T T e TR TR

onOo

10
20

30

40

50

60 -

70

80

SUBROUT INE PRNTXL(MAT N M)
COMMOMZME TMR/NCOL
COMMCN/MALNA/NDA

REAL MAT(NDANDA)

INTEGER 1 »JeKesLiM1HN
PRINT " ?

DO 1 L=1yM»12

K =L + 11

IF (M=L+LT.11) K = M

DO 2 I=1.N

PRINT?C1IX s12F108) 9 (MAT(I sJd)yJ=L¢X)
CONTINUE

PRINT'(//)?

CONTINUE

PRINT*(///)?

RETURN

END

SUBROUTINE TFR(XsAsNsMyK,y1)
1 GIVES X = A, 2 GIVES X = A TRAN§POSE

3 GIVES X = A AS A VECTOR

4 GIVES A = X WHERE X WAS A VECTOR
DIMENSION X(1),AC1)
COMMON/MATINB/NCCL

JSS(K=1)~NCOL *M
JEND=M*NCOL

GO TO (10 1+30+50,70)41
DO 20 11=1sN

DO 20 JU=I11,3JENDsNCOL
X(JJ)ZA(JJ*rJS)
RETURN

D0 40 II=1N
KK=(f1-1) «NCOL

00 40 JJu=1+M -
LL=(JJ=1) *NCOL+1II
X(KK+JJI=A(LL*JS)
RETURN

KK=0

DO 60 I1I=1,JENDyNCOL
LL=1I1+N-1

DO 60 JU=IILL
KK=KK+1
X(KK)=ACJIJ*+JS)
RETURN

KKz=M2N+1

DO 80 11=1+M
LL=(M=I1I) ~NCOL+1

DO 80 IJ=ayN

KK2KK-1
JuzlLeN=-14d
A(JJ*JS) = X(KK)
RETURN

END




FUNCTICN DOIINR A »B)
DIMENSION A(1),8(1)
0DOT=0.
DO 1 I=1sNR

1 DOT=DOT+A (1)*B(])
RETURN
END

SUBROUTINE VADD(N+C1:,A,8)
DIMENSICN A(1)4B(1)
DO 1 I=1l«N
1 ACIN=A(I)+C12B(]I)
RETURN
END

FUNCTION XNORM(N.A)

C COMPUTES AN APPROXIMATION TO NORM OF A
DIMENSION A(1)
COMMON/MAINB/NCOL s NCOL1
NN=NeNCOL
Ci1=0.

TR=A(1)

IF (N.EQ+1) GO TO 20
I=2

DO 10 1I=NCOL1 NN,NCOL
J=11

B0 5§ wu=II1sNCOL
Ci=CL +ABS (A(UYI*A(JYI))

5 NENES!
TR=TR+A(J)
10 =1+l .

TR=TR/FLOAT(N)
DO 15 I1=1/)NNyNCOL]
15 C1=C1+(ACII)=TRI~*2
20 XNORM=ABS (TRI+SQRT(C1)
RETURN
END

== NOT A BOUND




ek g 5 e i e h e

Appendix E
Line-of-Sight and Defocus Algorithm
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The equations relating optical surface motion are given below in
Eqs E-2, E-3, and E-4. These form the line-of-sight and defocus cri- ;

teria as

(E-1)

"
N

LOSX = Y/F, LOSY = X/F, DEFOCUS

e e MR WY b

> e

where

e

X = Al [—XP + Xt - RP-GYp + AZ : GYS - 2T ° eYé] + Xt - Xf (E-2)

Y= Al [—Yp + Yt __RP-BXp - A2 GXS + 2T GXé] + Yt - Yf (E-3)

z-A3[:zp-zzs+zt-_l+zc-zf (E~4)

o
L}

8.051 = focal length

.

where

T R . 0w, T

>
]

0.2987

et
(]

93.90

e
[]

0.0892

TNy T

R = 53.9

66.95

L]
)

The terms Xi, Yi’ Zi’ exi, eYi, ezi for I = p, s, t, f refer to the trans-
lat.ions and rotations in the global X, Y, and Z directions of the primary
(p), secondary (s), tertiary (t) and focal plane(f) elements. The coeffi-

cients A,, T, and F are functions of the radius of curvature of the mirrors.

3
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These are given by

A = —— (E-5)
2T - R,
R
A, = _2P_' +t) (E-6)
th
Ay = (E-7)
2
E - Rt + Z(tl + tz)]
R, R
F=——B (E-8)
4T - 2R
R
T=—R +t + e, (E-9)
2

where

R_ = radius of curvature of the primary mirror

R_ = radius of curvature of the tertiary mirror

t;, = axial distance from primary to secondary mirrors
2= axial distance from secondary to tertiary mirrors
The expressions for the translation and rotation of each mirror in global
coordinates may be formed in terms of the displacements at the nodes which
support the mirrors. These are given by the following equations in which the

numerical subscripts indicate specific support nodes.
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Primary Mirror:

X, = K3, + 1.25 Q,, - Y35) (E-10)
Yp = 0.50 (Y34 + Y35) (E-11)
zp = ~0.2143 (234 + 235) + 0.7143 (Z28 + Z30) (E-12)
SXP = 0.0714 (Z34 + 235) + 0.0714 (228 + Z30) (E-13)
! er = 0,125 (234 - 235) (E~-14)
E ezp = 0.125 (Y35 - Y34) (E-15)
|
E Secondary Mirror:
.; xs = X40 (E-16)
' - Yo=Y, (E-17)
| ZS = 240 (E-18)
exs = GXAO (E-19)
3 bY, = 6Y,, (E-20)
BZS = OZAO (E-21)
F
Teritiary Mirror:
: Xt = X27 + 0.3750 (YZ9 - Y27) (E~22)
P
| Y, = 0.50 (Y27 + Y29) (E-23)
. zt = 0,7143 (227 + 229) - 0.2143 (232 + 233) (E-24)

S |
s
i
I
!
y
i




| 8X_ = 0.0714 (Zy; + Zyq) + 0.0714 (24, + Zgg (E-25)
\
BY, = 0.125 (Z,; = Zyg) (E-26)
62, = 0.125 (Y9 - Y,;) (E-27)
Focal Plane:
X, = X, +0.6250 (¥; - Yo) (E-28)
Y, = 0.50 (Yg + ¥);) (E-29)
z, = Z,0 (E-30)
6X, = 0.10 (Zg + 2;;) - 0.20 2, (E-31)
8Y, = 0.125 (24 - Z;;) (E-32) ‘
|

8z, = (E-33)

0.125 (Y11 - Y9) '
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